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Liebe Leserinnen und Leser,

wir alle nutzen kunstliche Intelligenz. Beinahe tag-
lich. Meist ohne es zu merken. Wenn wir uns von
Suchmaschinen durchs Web lotsen lassen, wenn
wir online shoppen. Oder wenn wir fir die Suche
nach dem rechten Weg Navigationssystemen ver-
trauen.

In Navigationssystemen steckt kunstliche Intel-
ligenz Ubrigens gleich dreifach drin. Da wird der
kurzeste Weg ermittelt. Da gibt es eine Sprachaus-
gabe. Und da werden aktuelle Verkehrsinformatio-
nen mit in die Routenplanung einbezogen.

Ist das nun kinstliche Intelligenz? Ja, auch. Aber
eben nicht nur das. Der Begriff Idsst sich bislang
nicht wirklich klar definieren. Es geht irgendwie
um Informatik, um abgefahrene Technologien
und um immer mehr Anwendungen.

Mit Blick auf die Hydrographie schafft hoffent-
lich diese Ausgabe der Hydrographischen Nach-
richten etwas mehr Klarheit. Wir haben die Frage
gestellt, welche Rolle kinstliche Intelligenz in der
Hydrographie spielt. Die Antworten erfahren Sie
in funf Fachbeitrdgen — zwei davon sind im Peer-
Review-Verfahren begutachtet worden — und im
Wissenschaftsgesprach mit Professor Alexander
Reiterer vom Fraunhofer-Institut fir Physikalische
Messtechnik IPM in Freiburg (Seite 42).

In den Fachbeitrédgen geht es um Steine auf
dem Gewadsserboden, die kunstliche Intelligenz
in Messdaten von Facherecholoten bzw. Seiten-
sichtsonaren erkennen soll (Feldens et al,, Seite 6,
und Christensen, Seite 24); es geht um die auto-
matische »Erkennung und Klassifizierung von ben-
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thischen Arten mittels Deep Learning« (LUtjens
und Sternberg, Seite 18); es geht um den Mangel
an echten Trainingsdaten und um den Versuch,
die kunstliche Intelligenz mit synthetischen Bil-
dern zu trainieren (Steiniger et al,, Seite 30); und
es geht um Softwareldsungen, die dank maschi-
nellem Lernen neue autonome Anwendungen in
der Hydrographie ermdglichen (McPherson Kimg,
Seite 36).

Auffallend ist, dass es bei den KI-Anwendungen
vor allem um das Erkennen von Mustern geht. Und
dass kunstliche Intelligenz gar nicht von sich aus
intelligent ist, sondern erst von Menschen trainiert
werden muss. Von Science-Fiction keine Spur.
Aber umso mehr von Science. Was in diesem Heft
prasentiert wird, ist Uberwiegend Stand der Wis-
senschaft, noch nicht Stand der Technik. Die An-
wendungen finden erst allméhlich Einzug in die
Praxis.

AulBerdem im Heft: Die Beitrdge von den bei-
den fir den DHyG Student Excellence Award nomi-
nierten Absolventinnen der HCU. Cigdem Askar
vergleicht verschiedene Sedimentecholote fur die
Anwendung in flachen Gewdssern (Seite 54). So-
phie Andree entwickelt Open-Source-Bibliothe-
ken fur die Prozessierung hydrographischer Daten
(Seite 48).

Und Peter Ehlers blickt in einem angemessen
langen Beitrag auf die hundertjéhrige Geschichte
der IHO zurlck (Seite 62).

Ich wiinsche Ihnen eine erkenntnisreiche Lektd-
re dieser Ausgabe.
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Peter Dugge, Dipl.-Ing.

Horst Hecht, Dipl.-Met.
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Automatic detection of boulders
by neural networks

A comparison of multibeam echo sounder
and side-scan sonar performance

An article by PETER FELDENS, PATRICK WESTFELD, JENNIFER VALERIUS, AGATA FELDENS and SVENJA PAPENMEIER

Neural networks show great promise in the automatic detection of boulders on the
seafloor. Maps derived from bathymetric data show better performance compared to
backscatter mosaics in this study. However, we find the lack of training data ground-
truthed to a high standard the largest challenge for automated object detection based

on acoustic data.
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Neuronale Netze sind sehr vielversprechend bei der automatischen Erkennung von Felsbrocken auf dem
Meeresboden. Aus bathymetrischen Daten abgeleitete Karten zeigen in dieser Studie eine bessere Leis-
tung im Vergleich zu Rickstreumosaiken. Die grofSte Herausforderung fur die automatische Objekterken-
nung auf Basis akustischer Daten ist jedoch der Mangel an Trainingsdaten, die auf einem hohen Standard

erprobt sind.

1 Introduction

Multibeam echo sounders (MBES) have been used
for decades to provide high-quality bathymetric
maps of the seafloor (Lurton 2002; Augustin et al.
1996; Pickrill and Todd 2003). The German Hydro-
graphic Office (Federal Maritime and Hydrograph-
ic Agency, BSH) collects bathymetry and detects
objects underwater by vessel-mounted MBES
systems (Dehling and Ellmer 2012). The data sur-
veyed in German waters are processed into official
nautical charts and nautical publications to ensure
navigational safety at sea. Accurate and reliable in-
formation of seabed’s topography further forms a
decisive basis for political and technical decisions
relating to the sea, including applications depend-
ing on spatio-temporal-resolved 3-D geodata.
Echo sounding is a measurement technique al-
lowing for the 3-D reconstruction of the surface of
the seafloor and all objects located on it. As a pri-
mary result, a digital surface model (DSM) is avail-
able. During the following data processing chain
conducted at BSH, the task is to separate between
the surface measured and the actual seabed, to
derive a digital terrain model (DTM) of the seafloor.
The detection and extraction of boulders are chal-
lenging. At BSH, it is realised in a semi-automatic
process based on geometric filtering, with interac-
tive post-processing and a final visual inspection
by well-trained experts. This procedure is time-
consuming and error-prone because of subjectiv-

ity and generalisation. Against a background of
increasing user requirements (e.g. nautical infor-
mation service needs a consistent separation of
seabed and boulders for chart production; marine
spatial planning requires information about condi-
tions on the seabed to assess the impact of off-
shore construction projects) and the compliance
with international standards (IHO S-44 Order 1a
and 1b require the reliable detection of obstacles
along all main shipping routes), automation of the
processing chain is indispensable in terms of ac-
curacy, reliability and reproducibility of the results.
It is also required in the sense of an efficient evalu-
ation of large areas.

Next to hydrographic applications, recent de-
velopments in habitat mapping require the de-
tection of cobbles and larger hard substrates. The
identification of marine hard substrates based on
acoustic remote sensing is important for the de-
tection, delineation and ecological assessment of
seafloor habitats (Papenmeier et al. 2020) as well
as for marine spatial planning. This need is ac-
counted for in several international frameworks,
such as the Convention on Biological Diversity
and the Marine Strategy framework directives.
Boulder detection in the German Baltic and the
North Sea for these purposes is done using side-
scan sonar (SSS) systems. Next to the ease of op-
eration over large scales, the survey geometry
of a side-scan sonar, towed above the seafloor,
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Fig. 1: Location of the investigation site west of Fehmarn (left). Water depths in the area range between 16 m and 25 m (centre),
dashed lines are the survey lines run during MBES data collection. Right: Slope calculated from the local bathymetry

aids the detection of small objects. Both for man-
ual and automatic methods, boulder detection
was found to be more reliable, with an increas-
ing number of pixels forming an object’s repre-
sentation in backscatter (BS) mosaics (Feldens
et al. 2019). Acoustic shadows, which form be-
hind boulders, increase the number of pixels of
boulder representations in backscatter mosaics.
Shadow sizes increase with grazing angle, thus
favouring towed sonar systems (Papenmeier et
al. 2020). Therefore, while the spatial resolution
of modern MBES derived backscatter information
can rival that of side-scan sonar systems in many
relevant practical applications (depending on
water depth), their survey geometry is unfavour-
able for boulder detection in backscatter data.
However, the pixel-perfect co-registration of
depth and backscatter and derived data sets may
offset this disadvantage and facilitate boulder
detection based on MBES data. Considering the
interpretation of extensive areas, human experts
have difficulties in combining information of mul-
ti-dimensional data sets, while machine learning
algorithms are less limited by dimensionality and
more efficient (Yokoya et al. 2017).

In the last decade, object detection frame-
works based on convolutional neural networks
(CNN) were applied to different topics, including
remote sensing in the earth sciences (Ghamisi et
al. 2017; Zhu et al. 2017) with great success. CNNs
were used to find boulders in side-scan sonar
backscatter mosaics, showing performance com-
parable to human experts in areas of moderate to
good data quality (Feldens et al. 2019). It is the aim
of this case study to compare the performance of
multibeam echo-sounder and side-scan sonar to
image boulders in single-band and multi-band
data sets including depth, slope and backscatter
intensity. An object detection framework based
on a neural network is used to identify boulders
in the data sets, and the results are compared with
the interpretation of human experts.
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2 Methods

2.1 MBES

Multibeam echo sounder data were collected in
summer 2019 from the hydrographic survey ves-
sel VWFS Deneb, operated by BSH, by a state-of-
the-art MBES system Teledyne-Reson Seabat 7125-
SV2. The system operates at 400 kHz with a 140°
opening angle, a pulse length of 300 ps and 512
beams per swath. The seafloor of the study area

Teledyne PDS was used for real-time data acquisi-
tion. A combined GNSS (Global Navigation Satellite
Systems; good global but poor relative accuracy)
and INS (Inertial Navigation System; good local ac-
curacy but drifts without external reference) forms
the basis for an accurate and reliable real-time di-
rect georeferencing of MBES measurements. MBES
instruments require an accurate portrayal of the
sound speed structure of the water column. In this
campaign, the distribution of water sound velocity
was determined by continuous profile measure-
ments using the multi-parameter online probe
Sea & Sun Technology CTD 60Mc. Bathymetry data
were processed using Teledyne CARIS HIPS & SIPS.
The processing chain holds techniques for i.a. cor-
rection of sound velocity induced effects, calcula-
tion of a georeferenced 3-D point cloud, genera-
tion of 3-D surface representation of the bottom
topography, outlier detection and filtering.

To create backscatter grids with a resolution of
0.25 m based on the multibeam echo sounder
data provided as s7k-files, angular variations in
intensities were removed using the open-source
processing toolbox MB-System (Caress and
Chayes 1996). A grazing angle of 40° (here, minor
variations in incidence angle have little effect on
backscatter intensity) was used as a reference
angle. A low pass Gaussian mean filter stretching
five samples in the across-track and three samples
in the along-track direction was applied once to

Boulder detection |



Boulder detection |

10°44.3'0 10°44.7'0 10°45.1'0

MBES backscatter

54°32.2N

54°31.8'N

54°31.4N

determination of boulders densities is indicated

. ] ;;i Fit
rw BS Mol 0 200 400m
Fig. 2: Left: Side-scan sonar backscatter mosaic (0.25 cm pixel size) used for boulder -
g p T -

classification in this study. Centre: Multibeam echo sounder backscatter mosaic.
Right: Location of the boulders (black dots) and empty image examples (red dots) used for training of the models
based on multibeam echo sounder data. The red box represents the test area for the manual identification of

the data to remove high frequency speckle noise.
Data gaps of up to 1.25 m were interpolated. The
grid was built by applying a Gaussian Weighted
Mean. As available profiles are overlapping, sam-
ples of higher grazing angles were given an in-
creased priority during gridding. Profiles were run
in both N-S and S-N directions on the same pro-
file track. For the backscatter maps, one of these
directions was used, the other line was discarded.
Backscatter intensities were clipped at the 0.2 %
and 99.8 % percentile to improve image contrast.
In this study, higher backscatter intensities are dis-
played in darker colours. All backscatter intensities
are uncalibrated, relative values (Lamarche and
Lurton 2018) and were exported as 8-bit greyscale
mosaics following processing. Multi-band images
of MBES-derived grids of backscatter, slope and
depth were created using the open source GDAL
utilities (GDAL/OGR contributors 2021), by plac-
ing slope information in the green image channel

2.2 SSS

The side-scan sonar data were recorded in May
2019 during cruise #164 with the vessel VWFS
Deneb. The Edgetech CSS-2000 was towed at an
altitude of approximately 12 + 3 m above the sea-
bed. Due to technical problems with the CSS-2000
a change to the hull-mounted side-scan sonar
(Edgetech 4300 MPX) became necessary dur-

data sets). The vessel speed varied between 4 and

4.5 kn. Using a swath-width of 200 m the profile
distance was set to 180 m to allow an overlap of
approximately 10 % at the edges.

Processing of the backscatter amplitudes was
done with the software package SonarWiz 7.3.
Only the higher frequency of the CSS-2000 has
been used (600 kHz). The 4300 MPX used a fre-
quency of 410 kHz. After bottom tracking and em-
pirical gain normalisation, the data of the towed
system additionally required a correction of the
navigation data. The sheave offset was adjusted,
and a layback correction was executed basing on
data of a cable counter and a pressure sensor. To
generate a final backscatter mosaic both data sets
were merged. The overlapping profiles were cut at
the edges as far as possible without causing gaps.
Finally, a mosaic (8-bit greyscale) with a spatial res-

2.3 Manual boulder count

Two experienced human interpreters did a manual
red box) based on the side-scan sonar mosaics.
Human interpreters generally recognise boulders
by an increased backscatter intensity facing to-
wards the side-scan sonar, followed by an acoustic
shadow forming behind. The human interpret-
ers were not involved in picking the training data
for the neural networks. To interpret larger areas,
a raster approach is used. For 50 m x 50 m cells
decided whether it includes no boulders, one to
five boulders, or over five boulders. This procedure
is in line with currently published recommenda-
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tions for mapping geogenic reefs (Heinicke et al,,
in press), used to characterise geogenic reefs over
larger areas. The agreement between the human
experts is calculated using the F; score of the re-
sulting confusion matrix. An F; score of 1.0 indi-
cates perfect agreement, while the lowest value is
0, when either precision or recall are 0. The F, score
is calculated from the confusion matrix by F; = 2 x
(precision x recall) / (precision + recall). Values for
each class (no boulders, one to five boulders and
more than five boulders) were averaged.

2.4 Automatic boulder count

2.4.1 Neural network

Artifical neural networks are composed of series
of interconnected layers of artificial neurons. In
a trained neural network, input signals are trans-
formed by changing weights at each connection,
until the last layer of the network reports the re-
sult of the computation. Convolutional neural
networks are a subset of neural networks and
were developed for image classification with over-
whelming success. While the architecture of CNNs
varies, all include a series of convolutional layers,
that operate by convolving a small part, often 3 x 3
pixels, of the underlying image (or the output of an
earlier layer in the network) with weights initialised
at random. This assumes that pixels in close vicin-
ity are more likely to form patterns significant for
the image context than those pixels with greater
distance. The weights are adjusted during model
training with annotated images to minimise a loss
function. Loss functions compare the predictions
of the neural network to the annotations. To allow
CNNs learning non-linear features, activation func-
tions change the output of layers in the network,
while regular downsampling of the image size al-
lows the network to learn features of larger scales.

The automated boulder count was done using
the YOLO (You Look Only Once) framework, de-
veloped by Joseph Redmon (Redmon et al. 2015),
with the current implementation available under a
permissive license on GitHub (https:/github.com/
AlexeyAB/darknet). Lary et al. (2016) and Schmid-
huber (2015) give a detailed description of convo-
lutional neural networks and their application for
image interpretation.

The YOLO network was developed for object
detection. To identify and locate different objects
in images is more complicated than the classifica-
tion of entire images and requires a different net-
work architecture. YOLO is a one-stage detector,
meaning it analyses images in one pass (hence the
abbreviation, You Only Look Once) while keeping
high accuracy. One-stage detectors are a faster
approach compared to other object detection
frameworks that rely on multiple stages for object
detection in images. The YOLO architecture is de-
scribed by Bochkovskiy et al. (2020). In principle, it
uses a series of different convolutional layers (the
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backbone and neck) to extract object features and
divide the input image into grids at three different
resolutions. For each grid cell at each resolution,
it predicts the probability that the cell includes a
learned object within anchor boxes of predefined
size. These probabilities and the corresponding
bounding box coordinates are the output of the
trained model. YOLO networks are available in dif-
ferent configurations of the backbone, of which
we here utilise the standard configuration of YOLO
version 4.

2.4.2 Model training and application

To create the training data sets, a human inter-
preter identified bounding boxes of boulders in
training areas in QGIS 3.16. Boulders were required
to have a shadow. The boulders were exported as
an SQLite database. The training database for the
SSS model includes 13,847 boulder instances. A
model was trained on a data set with an empha-
sis on small boulders comprising only a few pixels.
This data set comprises 4,070 entries. The MBES
training database was only started with the inves-
to use the same training data sets for MBES and
SSS models, since the position accuracy of the
side-scan sonar is not good enough to co-locate
features of only a few pixels in size. Therefore, the
MBES training data set comprises 2,654 instances
8 x 15 pixels including shadows. The training mo-
saics were cut into small georeferenced images of
64 X 64 pixels (corresponding to approximately
16 m x 16 m in this study), overlapping by six pix-
els to minimise the number of training boulders
that are cut by image boundaries. In the following,
the pixel coordinates of the annotated examples
were calculated and used as an input for training.
Besides the annotated boulder examples, 182 ex-
amples of empty images (defined as containing no
boulders) were selected for the MBES data set and
2,349 examples of empty images for the SSS data
set.

For training, we used the YOLO network ver-
sion 4, in contrast to earlier case studies that used
the two-stage RetinaNet framework (Lin et al.
2017). We adhered to suggestions published on
the project’s GitHub page and changed the de-
fault configuration of the YOLO network. There-
fore, the maximum number of training batches
was reduced to 6,000 for MBES models and 24,000
for SSS models, the number of classes reduced to
one, and the filter number of the convolutional
layers before the object detection layers reduced
to 18. Images were magnified to 512 x 512 pixels
before training. Random variations in hue, expo-
sure and saturation applied to the image were re-
duced from their standard settings to 0.1. The size
of the input image was changed by 40 % every
ten batches at random, and the size and aspect

Boulder detection |
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Fig. 3: The appearance of boulders in the different data sets. A) At a distance of 45 m to the nadir individual boulders are recognised in SSS backscatter.
The same boulders (27 m to the nadir) are more difficult to recognise in MBES backscatter. The boulders are visible in bathymetry, slope, and combined
data sets. B) Small boulders as imaged in the outer part (75 m to nadir) of a side-scan sonar swath. The characteristic boulder pattern is hard to recognise
and appears smeared in the along-track direction, due to yaw movements or decreasing along-track resolution. The appearance of boulders is difficult to
interpret in MBES (20 m to nadir) backscatter, but the objects are recognised in slope, bathymetry and combined data sets. The position of SSS images was

shifted by several metres to account for positional differences to the MBES. The green arrow points to the nadir. SSS data was recorded with a CSS-2000
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ratio were also changed by +60 % for each image.
The optimal anchor sizes for the YOLO network
were calculated. 15 % of the training samples were
randomly selected for validation and used to cal-
culate the average precision for the boulder class
(AP) of the different networks. After the image set
for validation was separated, a Python script ro-
tated every image in 45° steps to account for vari-
able survey directions. The training took place on
a NVIDIA 2080 Tl graphic card (11 GB RAM). Training
of the MBES models required about twelve hours
for the MBES models and 40 hours for the large
SSS model.

For model application, the training procedure is
reversed. The (single or multi-band) mosaic is cut
into small georeferenced image tiles of 64 x 64
pixels. Threshold values for include objects were
set to 0.2 for all models except the SSS model for
small objects, which was set to 0.35. The model is
run on these small tiles. The detection of objects
on a single image requires about 10 ms on an
NVIDIA 2080 TI. The pixel-coordinates of the result-
ing bounding boxes are converted to geographic
coordinates and displayed using QGIS. To emulate
the raster approach used by human experts to
cover large areas, detected boulders in each grid
cell are counted.

3 Results

3.1 Local geology and appearance of boulders
Water depths in the investigation site (approxi-
mately 2 km?) vary between 16 m and 25 m, with
depths increasing towards the north. Backscatter
maps derived from MBES and SSS show different
deposits and intensive disturbance by bottom
trawling activities in the north (low backscatter).
High backscatter intensities characterise glacial
lag deposits towards the south and east. A high
number of boulders are part of these deposits. In-
termediate backscatter intensities towards south
and west characterise fine to medium sands and
partial outcrops of glacial lag deposits. In the side-
scan sonar mosaics, which cover a larger area, a
series of elongated, elevated ridges exist in the
southeast. The general sedimentological build-

up also controls the local slope shown in Fig, 1.
While high pixel-to-pixel slopes exceeding 60° at
maximum prevail in the areas of glacial lag depos-
its due to the presence of boulders and near the
trawl marks, the remaining area is flat with slope
values below 2°,

Based on a visual inspection, we find most boul-
ders in the area composed of glacial lag deposits,
with some also present in the sandy facies. The
boulders have different characteristics in the data
sets that are displayed in Fig. 3. In the SSS-derived
backscatter mosaics, boulders can be recognised
by a high backscatter front, an intermediate in-
tensity signal behind and an acoustic shadow at
the back, relative to the side-scan sonar position.
However, small boulders are often more difficult to
interpret. This is caused either by their small size
or their position in the outer part of the swath (a
tion, artefacts in side-scan sonar data can resem-
ble smaller boulders. Such artefacts include scatter
from water column stratification or areas near the
side-scan sonar nadir.

In MBES-derived backscatter, boulders are rec-
ognised by an increase in backscatter intensity
compared to the surrounding seafloor (Fig. 3) but
are often lacking a pronounced acoustic shadow.
The backscatter representation of boulders is less
distinct compared to SSS imagery in close to inter-
mediate distance to the nadir. Boulders are imaged
as circular to elliptic features in maps of the local
slope. Slope values for boulders range from 3.5° to
more than 60° degrees, related to the large vari-
ety of boulder shapes in transported lag deposits
transported by glaciers. Also, boulders may be par-
tially buried in the subsurface. However, not all cir-
cular features correspond to increased backscatter
intensities, for example in the areas of overlapping
profiles. In MBES-derived maps of depth, boulders
are displayed as circular features elevated 2.5 cm
to over 50 cm compared to the adjacent seafloor.

3.2 Manual boulder identification

For a test area of about 30,000 m? two experi-
enced human interpreters picked boulders on the
side-scan sonar backscatter mosaic (Fig. 4). The
test area showcases instances of water column

xpert | n=26

hull mounted

ey

Expert Il n=54

Fig. 4: Manual interpretation of boulder occurrence in the test area based on SSS backscatter data. 0 25 50m

The number of identified objects is 26 and 54. Refer to Fig. 2 for location
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Number of boulders
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Difference in boulder
class human experts

L1
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Fig. 5: Top: Number of boulders identified with the raster approach by the slope-model and to human experts.

Bottom: Individual detection of the slope-model are plotted on top of the expert Il interpretation. Coloured cell boundaries
visualise the difference in interpretation between the human experts. A) Example of a potential boulder not noticed by

the experts. B) A potential false positive detection of the model. C) Detections near the side-scan sonar nadir, where no
judgment of the model detections is possible. For C, the slope map is shown in addition

stratification on the eastern side, a nadir stripe in
the centre of the area and an overlap of two differ-
ent profiles recorded with different side-scan so-
nars towards the west. The experts found 26 and
54 boulders. No human misinterpreted the water
column artefacts, nadir stripes or overlapping pro-
files as boulders. A higher variability exists in the
outer parts of the swath near the overlapping pro-
files, where the appearance of potential boulders
varies. The same human experts interpreted boul-
der densities over a larger area using the raster ap-
proach applied to 50 m x 50 m cells (Fig. 5). Dense
boulder assemblages were confirmed in the east
towards the outcropping glacial till, while boulders
are sparse towards west. Corresponding to the dif-
ferent number of individual boulders found in the
test area, expert | identified a larger area covered
by one to five boulders compared to expert Il. The

MBES SLOPE 64 %
MBES DEPTH SLOPE BACKSCATTER 61%
SSS BACKSCATTER large objects 43 %
SSS BACKSCATTER small objects 37 %
MBES DEPTH 36 %
MBES BACKSCATTER 18 %

Table 1: Overview of performance on the validation data set
(measured in AP) for the different models and data sets

F, score, measuring the agreement between the
two experts, is 0.61 based on 196 raster cells.

3.3 Automated boulder detection

The Average Precision (AP) of the models on the
performance is 64 % by the slope-only model, fol-
lowed by a model working on a 3-band data set
comprising MBES backscatter, slope and depth
with 61 % AP. The MBES backscatter-only model
achieves an AP of 18 %. The side-scan sonar per-
formance is 37 % to 43 %, with the lower AP for the
training data set with a focus on small objects. The
detections of the best-performing slope-model
are plotted on top of boulder densities as deter-
mined by human experts (Fig. 5).

The resulting detections of the models in the
find a total of 35 boulders, all including a discern-
ible shadow on visual inspection. One likely false
positive occurs around water column stratifica-
tion artefacts and one false positive in the nadir
region. The MBES backscatter model finds a total
of 29 boulders. Of these, seven have no discern-
ible shadow, while the remaining display at least
one pixel of acoustic shadows behind. The mod-
el working on the area-wide bathymetric grids
detects 14 boulders with elevations of 6 cm to
40 cm compared to the surrounding seafloor,
albeit most boulders smaller than 15 cm are not
recognised in the data set. The slope model finds
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59 objects at the test site, characterised by slopes
ranging from 35° to less than 3.5°. However, most
identified boulders show slope values of over 4°,
The model running on the combined data set of
backscatter, slope and depth detects 53 boulders.
Most of these boulders are also recognised in the

slope data set. However, several potential boulders
found in the slope data set were not found by the
combined model and vice versa, with examples
shown in Fig. 7. Here, a comparison with the in-
dependently recorded side-scan sonar data — bar-
ring some uncertainty because of the positional

Side scan sonar

MBES Depth

MBES Slope MBES backscatter

MBES Depth + Slope + Backscatter

Model confidence © 0,2-04 @® 06-0,8
® 04-06

vertical incidence. Refer to Fig. 2 for location

Profile Overlap
Nadir

0 25 50m
[

Fig. 6: Boulders found by the models in the test area in the different data sets. For the SSS backscatter mosaic,
magnified insets show the similarity of small boulders and artefacts due to water column stratification and near-
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inaccuracy that required shifting the side-scan
sonar mosaic location by a few metres — seems
to show that the slope data is correct, and these
objects should have been identified as boulders.
lar elevated features are identified as boulders by
the slope-model. We find similar examples, not
displayed here, in areas with remaining outliers in
morphological data which have a similar appear-
ance. Such outliers cause artificial slopes but do
not affect backscatter data information.

The results of the raster approach using the
model with the highest AP (the slope-model) are
tween 0 and 42 boulders in the 50 x 50 m cells.
The agreement with the human experts | and Il as
measured by the F; score for 182 cells (cells where
both SSS and MBES data are available) is 0.75 and
0.63, respectively.

4 Discussion

The high difference of boulder detection by very
experienced human interpreters (Fig. 3) shows
the need for an objective, automatic method for
boulder detection. The different count of individ-
ual boulders transfers to an agreement of 0.61 (F,
score) over 196 cells that were interpreted with the
raster approach. This poses a significant challenge
both for quantification of model performance
and for the establishment of correctly annotated
training images, a problem faced by many other
applications of neural networks to remote sensing
data (Zhu et al. 2017). The same person interpret-
ing the training database and the reference sites
for boulder detection (Feldens et al. 2019) partially
mitigates the problem. However, this approach
does not scale to more than one involved person
or to applications where objective results without
interpreter bias are required. Almost no study in-
cludes an extensive ground truthing for boulders

Overlap
MBES combined

- | SSS - manually shifted

Fig. 7: Boulders detected by the MBES-models are displayed. Boulders are verified in the side-scan

sonar image, whose position was shifted to account for positional inaccuracies. Near the nadir, potential |
boulders are not imaged in MBES backscatter data, while present in the slope map (blue rectangle).

Vice versa, the backscatter map displays increased backscatter intensities in areas where no increased

slope exists (red rectangle). No boulders are detected in both areas by the combined model working on

Tt
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Fig. 8: Test area composed of fine sediments with a marked impact of bottom trawling activity.
Because of the fine sediment composition, it can be assumed no boulders are present in this area.
The model working on slope data detects several false positives in the area, while models running
on backscatter, depth and the combined multi-band image report no false positives. Refer to the

northwest of Fig. 2 for location

in acoustic data, and — except for obvious instanc-
es — the interpretation of a human interpreter of
what is and what is not a boulder varies based on
his/her experience, with no possibility to judge
what is the correct interpretation. The appearance
and visibility of boulders in backscatter data can
change with swath width and incidence angle (Pa-
penmeier et al. 2020; von Ronn et al. 2019). While a
methodological description on how to assess geo-
genic reefs exists (Heinicke et al,, in press), it de-
fines no sufficient criteria to decide which objects
are to be identified as boulders in acoustic data.
Still, our case study allows qualitative insight
into the advantages and disadvantages of SSS
and MBES-based boulder mapping by neural net-
works. To mitigate the impact on AP for the dif-
ferent models, a single person confirmed all sam-
ples in the training database used for this study.
Therefore, model performance is only compared
relative to the interpretation of the acoustic data
by one human expert and not to the true seafloor
conditions. Both SSS and MBES systems supply
backscatter information. A problem of SSS-based
boulder detection are artefacts (Wilken et al. 2012),
e.g. near the nadir or in areas of water column
stratification that can in their structure resemble
small boulders (Fig. 6). Due to the requirements to
detect tiny objects comprising only 7 to 9 pixels in
the examples shown here and even less if objects
of 25 cm in size are to be detected in acoustic data
(von Ronn et al. 2019), there is limited information
to differentiate between artefacts and real objects.
This causes a trade-off during the training of side-
scan sonar-based models: if the sensitivity of the
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model to detect small boulders — as required by
regulations — is increased, the amount of false
positive identifications increases as well. Because
of the absence of well ground-truthed reference
sites, a calculation of meaningful precision-recall
curves to find optimal threshold values is not pos-
sible. Tuning the threshold level of the model to
the local conditions (e.g.,, the number of artefacts
in the data) is done manually, which is a subjec-
tive procedure. A possible solution is to include
nadir and water column stratification effects as
distinct classes and define these areas as insuffi-
cient for boulder detection. While MBES snippet-
derived backscatter data is not affected by water
column stratification and is used for object detec-
tion (e.g, Kunde et al. 2018), individual boulders
are not displayed in the specular regime (Fig. 7) at
near-vertical incidence angle and are resolved in
less detail compared to side-scan sonar images in
by a different along-track resolution due to dif-
ferent opening angles of the used systems (0.5°
at 400 kHz for the Reson 7125, CSS-2000: 0.26°
at 600 kHz, respectively 0.29° at 410 kHz for the
4300 MPX). Combined with the less pronounced
acoustic shadows, the AP of the MBES backscatter
model data set, therefore, is worse compared to
the model trained on side-scan sonar backscatter
not be recommended as the principal data source
for boulder detection based on our case study.
An obvious problem related to the use of MBES
bathymetry and derived slope values is the re-
quired thorough cleaning of the data, with outli-
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ers or morphological features having similarities
to small boulders in slope maps. An example of
such morphological feature in the German Baltic
Sea is related to bottom trawling (Fig. 8). The trawl
doors create steep local, almost circular morpho-
logical features when lifted off the seafloor. These
features are misinterpreted by the slope-only
model as boulders. The backscatter model cor-
rectly ignores these features. The combination of
backscatter and slope data also prohibit false posi-
tives in the combined model. Therefore, while the
AP of the slope model is the best on the valida-
sirable false positives in areas where boulders are
very unlikely to appear (Fig. 7). The pixel-perfect
coregistration of depth and backscatter informa-
tion by multibeam echo sounders can mitigate
this downside. Being the best model in our case
study, the slope-model results were compared
with the human raster-based interpretation of a
larger area. The F; score of the model compared to
the human experts is 0.75 and 0.62. Both scores are
higher than the score for the direct comparison of
the human experts, although the number of raster
cells counted is not identical due to the different
extension of available SSS and MBES data. Position-
al inaccuracies between the side-scan sonar and
multibeam echo sounder data of approximately
5 m may negatively impact the comparison of cells
where boulders are situated close to the edges. In
hindsight interpretation of the model-human dif-
ferences, potential errors on both sides were iden-
slope data is less affected than backscatter inten-
sity by survey geometry and finds boulders that
could not be identified in the side-scan sonar data
because they are located close to the nadir.

The poorer performance of the MBES depth-de-
rived model compared to the slope model is not
surprising, given that the maximum resolution of
the input image is the regional depth interval di-
vided by the available discrete pixel values. In our
study, this is 9 m divided by 256 (28 bpp, bit per
pixel), artificially limiting the vertical resolution to
ca. 0.035 m in the single band 8-bit image. Given
that many boulders have smaller elevations (Fig. 2)
and are visible in slope maps, the performance
of the depth model is good and may have great
potential for models operating on point clouds
and derived statistics which became available in
the last years (Held and Schneider von Deimling
2019; Guo et al. 2020). The advantages and disad-
vantages of including absolute depths as an input
channel for neural networks must be considered,
however. In the Baltic Sea, for example, finding
boulders in deeper muddy basins is unlikely, but

possible (Beisiegel et al. 2019), and changing depth
intervals between different sites (and thus chang-
ing resolution in colour-coded depth images) may
be problematic. We suggest exploring the use of
further depth-derived information, such as the
bathymetric position index, or texture parameters
derived from backscatter mosaics in the future.

Models working on a combination of depth,
slope and backscatter data produced false nega-
tives in the near-nadir region, as boulders are not
imaged in the backscatter channel. They also show
fewer false positives and are less susceptible to re-
maining outliers in bathymetric data. Therefore,
while the performance of the joint depth-slope-
backscatter data set is worse than for the slope-
only model (due to validation examples in the
nadir region) in our case study, its inherent robust-
ness to false positives by combining independent
data sets makes it the method of choice for practi-
cal applications in the future. Ideally, and needed
for many commercial applications anyway, an over
100 % overlap would remove the near-vertical in-
cidence backscatter data and is expected to im-
prove model results. Multi-band images with cali-
brated backscatter data collection (Lamarche and
Lurton 2018) would also allow for a quantitative
definition of boulders, e.g., by measuring increase
of backscatter intensity in addition to local slope
and local bathymetric position index.

5 Conclusion

Our case study shows that boulders are detected
with higher precision in bathymetric data com-
pared to backscatter mosaics recorded by either
multibeam echo sounder or side-scan sonar. The
results of the best model are comparable to the
range of results achieved by human interpret-
ers. We recommend combining bathymetry and
backscatter data into a multi-band image to limit
false positive detections. However, the limiting
factor for the automated detection of boulders in
acoustic data is not the technology, but the do-
main knowledge and the availability of accurately
annotated training images. Future activities should
involve the careful choice of sites for ground-truth-
ing and acoustic surveys, to create a high-quality
training data set. /
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Throughout recent years convolutional neural networks have been applied for various
image detection tasks. Training data thereby plays an important role for the perfor-
mance of those models. Not only the amount of images is crucial but also the number
of annotations, classes as well as image dimensions. In view of changing underwater
environments, the study of benthic communities is increasingly important especially
in the Southern Ocean as they provide a key link for ecosystem shifts. This study con-
centrates on the automatic detection and classification of benthic species using deep
learning. It could be shown that glass sponges, brittle stars and soft corals could suc-
cessfully be detected even on few input data and highly biased class distributions in
varying underwater scenes. Further analyses considering data-driven influences show
significant performance declines regarding the training on single objects and classes

per image and the evaluation on large image dimensions.
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In den letzten Jahren wurden gefaltete neuronale Netze fur verschiedene Aufgaben der Bilderkennung
eingesetzt. Die Trainingsdaten spielen dabei eine wichtige Rolle fur die Leistungsfahigkeit dieser Modelle.
Dabei ist nicht nur die Menge der Bilder entscheidend, sondern auch die Anzahl der Annotationen, Klas-
sen sowie die Bilddimensionen. Angesichts sich verandernder Unterwasserumgebungen wird die Unter-
suchung benthischer Lebensgemeinschaften vor allem im Sudlichen Ozean immer wichtiger, da sie hier
vor allem sensibel auf Verdnderungen reagieren. Diese Arbeit konzentriert sich auf die automatische Er-
kennung und Klassifizierung von benthischen Arten mittels Deep Learning. Es konnte gezeigt werden,
dass Glasschwamme, Schlangensterne und Weichkorallen selbst bei wenigen Eingabedaten und stark
unterreprasentierten Klassen in unterschiedlichsten Unterwasserlandschaften erfolgreich erkannt werden.
Weitere Analysen zu datengetriebenen Einflissen zeigen deutliche Leistungseinbuf3en bei einzelnen Ob-
jekten und Klassen pro Bild wahrend des Trainings und grof3en Bilddimensionen wahrend der Evaluation.

1 Introduction

Global ocean temperature rise and ocean acidifica-
tion are ubiquitous and threaten especially benthic
communities in the Southern Ocean where many
species survive only in a narrow thermal range
(Griffiths et al. 2017). To detect current ecosystem
shifts, studies regarding the abundance of mega-
benthic species can provide information as they
are very sensitive to environmental change (Pie-
penburg et al. 2017). Sponges should be especially
investigated as they create and shape habitats for
other species like brittle stars and a decrease in
sponges might directly lead to a decrease in many
other species as well (Mitchell et al. 2020).

One of the main methods to study megaben-
thic species is through optical imagery. It is a fast
and non-destructive sampling method and opti-
cal systems are typically mounted on towed or re-
motely operated vehicles. In light of its advantages,

an increasing amount of underwater imagery has
emerged raising the need for automatic analytical
methods. Recent research in full automatic detec-
tion and classification of marine images deploy
deep learning algorithms as they show superior re-
sults for unconstrained underwater environments,
non-iconic images and variant image deformations
(Gonzalez-Cid et al. 2017). The latter is one of the
main challenges as objects in marine images are
greatly changing due to different lightning condi-
tions, rotation of the camera system, lens distor-
tion and noise (Pavoni et al. 2021). To account for
this, multilayer convolutional neural network (CNN)
models are introduced. Learned features can be
recognised regardless of their position or imaging
condition and without previous image preproc-
essing or human supervision. In computer vision
tasks, two main methods for recognising multiple
objects have emerged: object detection and in-
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stance segmentation. The output of an object de-
tector is a set of bounding boxes around detected
objects whereas instance segmentation computes
pixel-accurate masks around detected objects and
is thus able to grasps the shape of objects. Gen-
erating training data for instance segmentation is
very laborious and masks are typically generated in
a second step after the bounding box detection.
Since this study simply focuses on the detection
of marine species without the necessity to capture
shapes of features, instance segmentation was not
implemented. Several previous works deal with the
classification and detection of fish (Salman et al.
2016; Christensen et al. 2018) or benthic communi-
ties (Boulais et al. 2020) using state-of-the art mod-
els such as LeNET, SSD via MobileNet and RetinaNet
via ResNet50, respectively.

For CNNs the amount of training data is consid-
ered to be the main driver for accurate network
inference. Also, better results are achieved with
deeper layered networks because features can
be learned at more diverse levels of abstractions.
As more layers of neurons are added to the net-
work, different feature details ranging from low-
level features such as lines or dots to high-level
features such as common objects or shapes are
trained to be recognised. Networks with multi-
ple layers are thus better at generalising because
they learn more discriminative features (Pauly et al.
2017). However, deeper layered networks typically
consists of several million of parameters, increas-
ing the demand of more training data. Therefore,
training data sets are commonly augmented by
changing the rotation, sharpness, perspective and
brightness (Huang et al. 2019) to produce more in-
putdatain a cost and time effective way. In view of
successful training, it is further important to con-
sider data related design choices such as number
of annotations and classes per image during train-
ing as well as the image input size. While consider-
ing image sizes ranging from 96 to 224 pixels, it
could be shown that the accuracy linearly increas-
es (Mishkin et al. 2017).

This paper investigates the effect of data driven
influences on the model accuracy in an attempt to
create a road map for optimal input training data
with regards to number of annotations and classes
per image, class imbalance and image sizes ex-
ceeding those in previous mentioned studies. For
the detection of benthic morphotypes the state-
of-the-art network CenterMask (Lee and Park 2019)
via ResNeXt-101 (Xie et al. 2017) was utilised which
is trained on the three classes: glass sponges, soft
corals and brittle stars.

2 Data
2.1 Underwater imagery data set

A seabed survey to investigate the epibenthos was
carried out during the PS118 cruise of RV Polarstern
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Fig. 1: Synthetically derived image compositions by placing cut out foregrounds

onto cropped backgrounds

in the western Weddell Sea in 2019 (Purser et al.
2021). Seafloor images were obtained using the
towed Ocean Floor Observation and Bathymetric
System (Purser et al. 2019). For this study images
from seven different sampling stations at distinct
depths and with diverse seafloor types were used
to incorporate various environmental alterations
in the network training process. The original 3840
X 5760 sized images were tiled rather than down
sampled to 1440 x 960 to keep the input resolu-
tion but decreasing the need for computational re-
sources during training. Image annotation for the
three object classes was conducted on 1000 im-
ages using the web-based annotation tool COCO
Annotator (Brooks 2019). The selected image set
was split so that 700 images belong to the training
set, 100 images to the validation set and 200 im-
ages to the test set. After labelling it was evident
that a high class imbalance persists because of the
3550 annotations from the training set, 87 % of the
labels belong to the class brittle stars, 8 % to the
class glass sponges and 5 % to the class soft corals.

2.2 Data augmentation

Data augmentation was conducted using the
image generator COCO Synth (Kelly 2019) which
composes new images by placing cut out objects
as foreground over plain seafloor images. The
foregrounds are randomly altered in brightness,
rotation, scale and amount. For training, a total
of 12,000 synthetic images were created from 30
foregrounds per class and 30 background images
(Fig..1). It is noted, that the selected foregrounds
and backgrounds originate from images that are
not part of the original training set mentioned in
section 2.1. Also, to alleviate class imbalance 4000
images of the 12,000 images are solely composed
of glass sponges and soft corals changing the ratio
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to 33 %, 33 % and 34 % for glass sponges, soft cor-
als and brittle stars.

3 Method

3.1 Deep learning architecture

The neural network which was utilised for the
detection of benthic species in section 4.1. and
4.2 is the object detector CenterMask (Lee and
Park 2019) in combination with the backbone
ResNeXt-101 (CM-X-101) (Xie et al. 2017). Backbone
refers to the part of the network which is used to
extract basic features and creates the feature map
representation of the input data. They are typically
initialised by ImageNet pre-trained weights. The
detection head uses the feature map to perform
the task of object detection and classification. It
computes bounding boxes on identified objects
for each image and calculates the classification
confidences. Both architectures used in this study
received excellent results in recent benchmarks
such as COCO (Lin et al. 2014). For the experiments
conducted in section 4.3 and 4.4 the more light-
weight backbone VoVNetV2-99 (CM-V-99) (Lee
und Park 2019) was used instead of ResNeXt-101
as it comprises fewer network parameters such as
weights of connections which reduces the com-
puting time.

3.2 Training details

Training was executed on five NVIDIA Tesla V100
GPUs of a 64-bit Linux machine equipped with an
Intel Xeon Gold 6254 CPU @ 3.10 GHz. The base
learning rate was set to 0.002. To reduce the effect
of early overfitting on highly differentiated data
sets, the learning rate was reduced for the first
and again after 38,100 iterations the base learning
rate was reduced by a factor of ten. The maximum
number of iterations one image batch was passed
forward and backward through the neural net-
work was 50,800 which corresponds to 20 epochs
defined as the number where the entire data set is
passed through the network.
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Fig. 2: Learning rate at number of iteration

3.3 Performance metrics

The performance was assessed based on the eval-
uation metrics adopted for COCO which are based
on the average precision and average recall scores
(Lin et al. 2014). Both, precision as well as recall are
evenly important metrics for the classification of
benthic communities. While precision is the ratio
of correctly predicted specimen out of all predict-
ed specimen, recall indicates whether all correct
specimen could be detected and how many were
missed. Consequently, the precision P defines the
proportion of false positives FP and the recall R
reflects the proportion of false negatives FN. With
TP being the number of true positives they can be
mathematically computed as follows:

TP TP
P= TP+ FP) and R= TP+ FN)

Precision and recall scores are then computed into
average scores (AP and AR) over all classes and at
varying intersection over union (loU) thresholds
which are used to measure the overlap between
ground truth and predicted bounding boxes. The
defined IoU are 0.5 and the average of ten loU lev-
els starting from 0.5 to 0.95 with a step size of 0.05
(the latter is further denoted as: .50:95). AP and AR
are also calculated for varying object sizes (small:
< 727 pixels, medium: > 72° and < 214° pixels, large:
> 214? pixels) and for different maximum number
of detections per image (1, 10, 100). AR, computes
the mean average recall across all classes and loU
thresholds for images where at most one detec-
tion was made while AR;g and AR;pg compute the
mean average recall for images where at most
ten or at most 100 detections were made, respec-
tively. Additional adopted metrics are the accuracy
to assess the total number of predictions that are
correct and the F; measure which evenly weighs
between precision and recall (Manning et al. 2009):

TP+ TN and £ 2PR
(TP + TN + FP + FN) T"P+R

accuracy =

4 Experiments and results
Main experiments in section 4.1 and 4.2 were execut-

Data set Training set composition

Baseline Original data set (700 images)

Synth-B Synthetic images with equal class distribu-
tion & Baseline composition (12,700 images)

Synth-GS Synthetic images composition including

extra glass sponges and soft corals &
Baseline (12,700 images)

Table 1: Data set compositions for main experiments
The corresponding test runs were performed on

the 200 original image test set. Further ablation
studies performed in section 4.3 and 4.4 were con-
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AP 0. 95 AP, APsmall  APmedium APIarge ARsmall  ARmedium ARIarge
CM-X-101/Baseline 417 68.2 253 203 547 216 51.6 55.2 25.4 451 70.8
CM-X-101/Synth-B 488 71.0 27.4 391 62.8 247 58.8 64.2 27.9 57.3 771
CM-X-101/Synth-GS 51.8 76.7 27.5 40.2 66.1 25.7 59.0 639 27.9 557 77.9

Table 2: Summary of detection results with bounding boxes (in percent)

ducted on 20 epochs using a smaller synthetically
derived training set of 2000 images with varying
image sizes, number of annotations and classes
considering the respective experiment. Corre-
sponding testing was performed with respective
300 synthetically derived images.

4.1 Detection results
To investigate the detection results of the trained
network, the average precision and average re-
call exhibit best scores around 76.7 % AP for an
loU 59 and 63.9 % AR;jgg on the Synth-GS data set
images to support the training increases the per-
formance of APsg.95 by 17 % and ARyoo by 16 %
emphasising the importance of more input data.
With regards to recall scores at varying numbers
of detections, it can be noted that more detec-
tions per image will lead to better recall evalu-

britle:siar (Ophiuroidea):

briffte stor (Ophiursides): €.59
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ations. Additionally, smaller object sizes receive
lower precision as well as recall scores throughout
mances might be caused by down sampling op-
erations inside pooling layers that are applied on
each feature map in the model. Down sampling
output feature maps makes them more robust to
changes in the translation of a feature in the im-
age but fewer features might get extracted as
resolution decreases with repeated convolutional
and pooling layers. Also, there is a relatively large
ratio between pixel size and object size for smaller
objects which quickly increases the possibility to
predict bounding boxes with positional deviations
from ground truth boxes. Those positional devia-
tions might already be too large to pass the thresh-
old defined for the loU.

Considering qualitative results, Fig. 3 shows
detection results for various stations with differ-

Glass spanae (Hexcctinelica): 0.44

Fig. 3: Detection results and

& confidences of the model
CenterMask — ResNeXt-101. Red

circles show missing brittle stars,

red arrows indicate inaccurate

bounding boxes predictions

and red rectangles reveal wrong

species detections. Images

belong to the test set and

originate from different diving

locations of the PS118 cruise
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Glass sponges Soft corals Brittle stars
F1 AP.502.95 F1 AP.SO:.QS F1 AP.SOZ.QS
CM-X-101/Baseline 677 1.4 703 36.8 80.2 469
CM-X-101/Synth-B 67.8 453 69.8 48.8 79.2 52.4
CM-X-101/Synth-GS 71.4 51.4 76.8 51.5 79.9 52.6

Table 3: Summary of performance results per class (in percent)

ent seafloor types, camera distances, variant illu-
minations and sharpness. It can be seen, that the
trained model is able to correctly detect almost
all specimen belonging to the three classes. Even
blurred images pose no problem in detection just
very small specimen or such that are lying closely
to one another might be wrongly detected as one.

4.2 Influence of class imbalance

The influence of class imbalance where class dis-
tributions are biased is a known problem in deep
learning applications (Guo et al. 2008). There are
many approaches to combat class imbalance such
as oversampling, undersampling or setting class
weights to emphasise minority classes. In this
study the underrepresented classes glass spong-
es and soft corals were oversampled because
this method has proven to be very effective (see
Guo et al. 2008; Buda et al. 2018). After adopting
the data augmentation strategy with additional
distributions of underrepresented classes, the F4
and AP scores are increased by 5 % and 13 % for
glass sponges and by 10 % and 6 % for soft cor-
AR scores across all classes are boosted with a per-
centage increase of 24 % APsy.95 and 16 % ARjpq
compared to the Baseline data set

4.3 Influence of number of annotations

and classes

Ablation studies with respect to number of an-
notations show that single annotations per image
have a precision reduction of 27 % when evalu-
ating on images with five annotations and 71 %
when evaluating on images showing up to 20 an-

100 %
90 %
80 %
70%
60 %
50 %
40%
30%
20%
10 %

Evaluation on 1 Annoation/Image

Evaluation on 5 Annoations/Image  Evaluation on 20 Annotations/Image

* -
o, —— {
~ /
\ —é\ =
\-—-_'_-—
AP 5005 AR AP s0.95 AR AP 50.95 AR

==@==Training on 1 Annotation/Image ==@=Training on 5 Annotations/Image ==®==Training on 20 Annotations/Image

Fig. 4: Number of annotations per image during training and the evaluation regarding average
precision and recall across varying numbers of annotations per image
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20 annotations show a reduction in precision of
22 % (59.5 % APs.95) and 18 % (63.3 % APsp.0s),
when testing on images with 20 annotations, re-
spectively. Hence, best AP results are received
when training is performed on images with up to
20 annotations, and worse results are scored when
images contain only single objects during train-
ing. Also, it can be argued that images with lots of
specimen not necessarily need to be implement-
ed for training as the gap between 59.5 % APsq. 95
and 63.3 % APsq. o5 is rather low. Overall, precision
and recall rates are slightly lower for multiple an-
notations in comparison to single annotations
per image. A reason could be that synthetically
derived data sets tend to compose overlapping
foregrounds the more foregrounds are being used
which poses incorrect detection results as also
stated in section 4.1. Considering the number of
classes, it is evident that multiple classes perimage
yield an increase in AP and AR by 280 % and 158 %,

gle classes on images should be avoided.

I T AR
Single classes 19.9 312
Multiple classes 75.6 80.6

Table 4: Performance for number of classes per image dur-
ing training (in percent)

4.4 Influence of image pixel dimension

For the investigation regarding differentimage pixel
dimensions, the original image was tiled into sizes
ranging between 1440 x 1280 and 960 x 768 pixels
as training for larger image sizes result in GPU mem-
ory issues and smaller sizes tend display only single
or cut objects for original data. The evaluation was
performed also on the original image size of 5760 x
3840 pixels to investigate whether tiling has to be
performed also for model inference. In general, the
evaluation on image sizes larger than 1440 x 1280
occur because region of interests could be assigned
to unsuitable feature levels. Also, as image sizes in-
crease, the more GPU memory and inference time is
being used. Meanwhile, same image sizes adopted
for both training and evaluation show not neces-
sarily a performance boost which demonstrate that
images deployed for the evaluation may vary in size
and aspect ratio from the input training set. Highest
precision results are achieved by the 1440 x 960 im-
age size trained with adequate (6 GB) GPU memory
usage. Further, it can be certain that original images
may contain multiple objects and classes.

5 Conclusion and outlook

In conclusion, this study shows that deep convo-
lutional neural networks are a suitable choice to
automatically detect and classify benthic species
in varying underwater environments. Further, large
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amountof training data can be synthetically derived
to feed deep networks with sufficient information
without risking overfitting. The implemented data
augmentation strategy is thus not only useful to ex-
tend the input data set but also to alleviate class im-
balances boosting the performance considerably.
When preparing input data, images not necessarily
need to exhibit lots of specimen decreasing time
spend for annotation. However, images with single
specimen and single classes should be avoided
as performance may drop significantly. Therefore,
larger image sizes such as 1440 x 960 pixels may
be used where chances are high that image tiles
contain multiple objects. On the contrary, greater
image sizes consume more GPU memory and if im-
age sizes exceed a critical threshold, the precision
will drop as region of interests may be assigned to
wrong feature levels. Next to this challenge, future
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Boulder surveys seek to identify prominent boulders which position may collide
with planned cable routes, offshore wind farms or other subsea construction activi-
ties. Data is collected using suitable sensor technologies such as bathymetry from
multibeam echo sounders and side-scan sonar imaging. Currently, the boulder iden-
tification process is a labour-intensive job that requires domain expertise to interpret
the data and provide each identified target with accurate annotations. With this work,
we propose to automate the majority of this process by training neural networks to
identify boulders in side-scan data. Our preliminary work estimates the area covered
by each boulder instance and further generates metadata for each identified target
for filtering, sorting and report generation. In addition to being an automated process,
our method can process several kilometres of side-scan data and identify thousands of
boulders in less than a minute. Not only does this provide results of high accuracy but

it also performs orders of magnitude faster than human processors.
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Erkennung von Felsbrocken | AUV | SeaCat | kiinstliche Intelligenz | Deep Learning | Side-Scan-Sonar-Bilder

Bei der Vermessung von Felsbldcken geht es darum, markante Felsblocke zu identifizieren, deren Position
mit geplanten Kabeltrassen, Offshore-Windparks oder anderen Bauten unter Wasser kollidieren kénn-
te. Die Daten werden mit Hilfe geeigneter Sensortechnologien gesammelt, wie z.B. Bathymetrie von
Facherecholoten und Side-Scan-Sonar-Bildern. Derzeit ist es eine arbeitsintensive Aufgabe, Felsbrocken
zu erkennen, die Fachwissen erfordert, um die Daten zu interpretieren und jedes identifizierte Ziel mit
genauen Anmerkungen zu versehen. Mit dieser Arbeit schlagen wir vor, den GrofSteil dieses Prozesses
ZU automatisieren, indem wir neuronale Netze trainieren, um Felsbrocken in Side-Scan-Daten zu identi-
fizieren. Unsere vorldufige Arbeit schatzt die Flache, die von jedem Felsbrocken abgedeckt wird, und ge-
neriert darber hinaus Metadaten fir jedes identifizierte Ziel zum Filtern, Sortieren und Erstellen von Be-
richten. Da es sich um einen automatisierten Prozess handelt, kann unsere Methode in weniger als einer
Minute mehrere Kilometer an Side-Scan-Daten verarbeiten und Tausende von Felsbrocken identifizieren.
Dies liefert nicht nur Ergebnisse von hoher Genauigkeit, sondern arbeitet auch um GréBenordnungen

schneller als Menschen.

1 Introduction
Collecting side-scan data of large areas using au-
tonomous underwater vehicles (AUVs), operators
seek to utilise the vehicle’s total endurance to cover
as much area as possible by following a predefined
trajectory or by traversing back and forth in a lawn-
mower pattern. This is accomplished with a care-
fully chosen set of parameters relating to vehicle
trajectory, attitude, velocity and sensor settings
to align for sufficient coverage, overlap, data reso-
lution and data quality. As work is done in GNSS-
denied environments, positioning and navigation
are estimated by high-quality acoustically-aided
subsea inertial navigation systems. During opera-
tion, communication with the vehicle is limited to
low-bandwidth acoustic data links typically used to
monitor only a few important vehicle parameters.
We describe subsea surveying as the process of
mapping the ocean floor by collecting highly ac-

curate georeferenced data points. Boulder surveys,
more specifically, seek to identify prominent boul-
ders whose positions may collide with planned
cable routes or offshore wind farms. Such surveys
are performed using suitable sensor technologies
such as bathymetry from multibeam echo sound-
ers and side-scan sonar imaging. The ever-accu-
mulating log files are first available for review after
mission completion where boulders, defined as
salient objects on the seabed, need identification.
This identification process is a labour-intensive job
and does not only require domain expertise for
interpreting the data, but each identified target
needs further to be measured in size and mapped
to its exact location. The processing job is typically
concluded by compiling a report of all prominent
targets and their metadata, providing the client
with detailed information needed for making in-
formed decisions on the next steps.
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@ Side-Scan Sonar Imaging

@ Log-file evaluation @ Boulder Identification

Neural Network

Fig. 1: Boulder identification in side-scan sonar data. 1. Underwater vehicle on boulder survey collects and logs side-scan data. 2. Side-scan logs are
evaluated by a neural network that predicts plausible areas occupied by a prominent boulder. 3. Boulders are identified and metadata is computed, filtered
and sorted. 4. Side-scan logs are concluded by generating a report. Colour map is applied for better visual appearance

@ Report Generation

majority of this process by leveraging neural net-
works for processing side-scan logs. More specifi-
cally, recorded logs are passed through our model
that estimates the positions and areas of promi-
nent boulders. Due to the design nature of the
neural network, all estimated boulders are separa-
ble at an instance level. This allows us to count the
number of boulders in the log file and analyse each
separate boulder in relation to georeferenced po-
sition, size and confidence. By further filtering the
outputs, we can remove most false positives and
eliminate cases where a boulder is identified and
counted several times. The latter case occurs due
to overlap in the data, which typically is created
and desired by design. We currently make a naive
assumption on size and calculate a pseudo area for
each boulder using the coverage obtained by the
estimated segmentation masks and can thus sort
boulders by size. Future work will be making more
accurate predictions on boulder sizes and hence
give complete control over which sizes (width,
height and length) are desired to report.

Our method does not only benefit from being
an automated process but also promises substan-
tially shorter processing times. Quantitatively, our
model can process several kilometres of side-scan
data and identify thousands of boulders in less
than a minute. In addition, the number of boulders
that our model identifies is significantly higher
than any human processor would possibly have
time to process. The presented work is ongoing,
but we estimate that saved time and effort will be
substantial even in the current state.

2 Side-scan sonar data set

We collect available side-scan logs from previous
completed in-house surveys and prepare them in
a format suitable for training neural networks, as
detailed below.

2.1 Hardware and data details

All side-scan data is recorded using EdgeTech 2205
sonar systems integrated on our SeaCat AUVs
(Kalwa 2019). Data is recorded using high-and low-
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frequency channels and is available in EdgeTech’s
JSF file format. Typically, side-scan logs are split
into line segments where turns are excluded. The
spatial size of each line segment varies with ve-
locity, altitude and sensor settings. Our complete
data set consists of more than 1500 km worth of
line segments recorded at many different loca-
tions. However, only a tiny fraction of this has been
given annotations suitable for learning boulder
identification. In total, we have annotated about
1300 prominent boulders with varying settings
scan snippets with corresponding segmentation
masks. We note that the objective of segmenta-
tion masks is to cover the complete area occupied
by prominent boulders in order to, at a later stage,
separate each of these areas into a boulder and
shadow region.

2.2 Preprocessing of acoustic images

With the protocol description from EdgeTech, we
read raw JSF files using Python to load the sonar
trace data into matrices for high- and low-frequen-
cies and port- and starboard-side channels. We
further collect the navigational data, pulse infor-
mation and weighting factor for each cross-track
line.

With the weighting factor and additional sen-
sor information, we restore each data sample to
its original floating-point value and perform slant-
range correction to match along-track and cross-
track resolutions. Each sonar image is further nor-

Fig. 2: Side-scan snippets with corresponding segmentation masks. For each

boulder, we draw a segmentation mask that covers the boulder itself and its

shadow. Colour map is applied for better visual appearance
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malised and stored as PNG images split into 200 m
long segments. When applying colour maps for
visualisation, we use the cmapy Python module
with the afm-hot colour scheme.

3 Boulder identification model

We aim to train a neural network that, given an
input, predicts plausible areas occupied by boul-
ders not only by placing rectangular boxes around
the object but by a per-pixel classification of the
input. Typically segmentation models consist of
an encoder-decoder style architecture like U-Net
(Ronneberger 2015). However, while U-Net style
networks are fast and easy to train, they fail to
offer object-instance separation. Consequently,
segmentation masks predicted by the model
are essentially one object and thus need further
processing to identify and analyse each separate
boulder. Especially when boulders are located in
close proximity, this is a difficult task. To avoid in-
accuracies from hard-coding object separation al-
gorithms, we base our model on Mask R-CNN (He
et al. 2017) for instance segmentation. As shown

plained in the following.

3.1 Feature extraction

To generate feature maps of our input, we use a Fea-
ture Pyramid Network (FPN) (Lin et al. 2017) build on
a ResNet (He et al. 2016) CNN with 50 layers. The FPN
is used to extract features at different scales from
our single-scale input efficiently. This is analogous
to processing our input image at different scales but
much more efficient in terms of computation. The
complete ResNet-50-FPN backbone is pre-trained
on the Microsoft COCO: Common Objects in Con-
text data set (Lin et al. 2014), and is not updated dur-
ing training for boulder identification.

3.2 Region proposals
Region proposals are generated by a Region Pro-
posal Network (RPN). This evaluates the input

feature map and predicts a set of rectangular
regions and their objectness (score of object vs.
background). The regions are generated by slid-
ing a fixed set of windows, called anchors, with
varying aspect ratios and scales over the available
(differently scaled) feature maps generated by the
FPN. We refer to Ren et al. (2015) for more details
on RPNs.

3.3 Rol pooling

The Region of Interest (Rol) pooling layer accepts
the feature map generated by our ResNet-50-FPN
feature extractor and the proposals from the RPN.
The proposals from the RPN are a set of regions,
each defined as a four-tuple (r; ¢; h; w) that specifies
top-left corner (r; ¢) and its height and width (h; w).
As such, Rol pooling has the objective of »crop-
ping« out regions of the feature map in which the
RPN has estimated an object and passing it on to
the final output heads.

3.4 Box and score prediction head

This accepts the feature map of the regions pro-
posed by the RPN, i.e, the regions most likely to
contain a boulder. We have two objectives for this
head: (i) bounding-box regression and (i) object
classification/score. The bounding-box regression
refines the region proposed by the RPN to enclose
the object better. The score is a measure of the
network'’s estimated probability of this object be-
ing a boulder.

3.5 Mask prediction head

For generating segmentation masks of our object
instances, a Fully Convolutional Network (FCN)
(Long et al. 2015) is used to estimate binary masks
for each Rol. This prediction is 1-channel and bi-
nary, and thus class-agnostic. Therefore, we rely on
the classification score from the above prediction
head to identify the object correctly. As we cur-
rently focus on boulders as a whole, we only have
two options for the classification (background or

Region proposals

Feature extraction

Fig. 3: Boulder identification model overview. A feature extraction network generates feature maps of the input image.

Mask predictions

These are the input to a region proposal network (RPN), predicting regions in the input likely to contain an object. Using the
region proposals, a region of interest (Rol) pooling layer »crops« the feature map and passes the regions on to our prediction
heads. The box and score prediction head refines the bounding-boxes for the regions and estimates the probability of each
region being a boulder. The mask prediction head performs a per-pixel classification of the proposed regions and thus

outputs a segmentation mask for each proposed region. Colour map is applied for better visual appearance
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boulder). However, in future work, we can use this
same architecture for expanding the scope to in-
clude more low-level predictions, e.g., separating
boulders into boulder and shadow regions. For
more detailed information on the mask prediction
head, we refer to He et al. (2017).

3.6 Loss functions

As we train our entire network end-to-end, we
employ a multitask loss that seeks to minimise the
error in each sub-network simultaneously. We can
define the total loss as:

L= LgeN + Lioc + Lels + Lmask
where Lgpy = L‘F;PCN+ L?ENconsﬂtutes bounding-
box regression loss and objectness score of the
RPN, Ljoc and L¢s are the bounding-box regression
and classification loss of the box and score predic-
tion head, and L,k is the average binary cross-
entropy loss over the per-pixel classification of the
Rol for the final segmentation mask (mask predic-
tion head). For more details on loss functions and
their implementation, we refer to Girshick (2015),
Ren et al. (2015) and He et al. (2017).

4 Experiments

4.1 Training details

Our models are implemented in PyTorch and
trained using four NVIDIA RTX 2080 Ti GPUs. Dur-
ing training, we load from our data set the 200-m
tracks with corresponding segmentation masks

and »mine« regions in which boulders are located.
We do this by random cropping 256 X 256 pixel
areas at locations that contain at least one annotat-
ed boulder. Since our annotations are sparse in the
sense that not all boulders in a 200-m track have
been carefully annotated, we ignore areas with no
corresponding annotated segmentation mask. We
further apply image transformations at random
during training time to represent as many visually
varying examples as possible. Finally, before en-
tering the network, the input image is resized to
800 x 800 pixels. We use a batch size of eight per
GPU and train our complete model end-to-end for
about 5 x 10% update iterations.

4.2 Results

side-scan data line-by-line by sliding a 256 x 256
pixel window over it. We note that we can process
input images of arbitrary size during inference
time and are not limited to non-postprocessed
(raw) lines. Hence, if a post-processing step is used
to generate side-scan mosaics and mitigate errors
from erroneous navigation or correct position off-
sets due to uneven seabed, we can utilise this as
input to our model. We use a sliding window ap-
proach to generate overlap of the processed data.
This ensures that objects receive maximum expo-
sure to the network and are therefore identified as
a whole and not only partly identified. The stride
of the window is an adjustable parameter that
balances processing time and accuracy. We use a
stride of 100 pixels for our experiments.

Fig. 4: Result from processing a 200-m side-scan line. Inputs to the model are generated by sliding a 256 x 256 pixel window

over the data as illustrated by blue squares. The red, green and purple squares are enlarged results and shown to the right.
Note that the input to the model is greyscale, but a colour map is applied for better visual appearance. The input image
used here has a length of 200 m, a width of 8o m and a resolution of 01 m/px. This was processed on a single GPU in 13 s.
The amount of identified boulders does not affect the processing time
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Accuracy (annotated vs. identified) 917 % 917 %
Accuracy (non-annotated vs. identified) 878 % 94.8 %
Model gain (annotated vs. identified) X 62 X 27

Human Model (stride = 100 px)

Average processing speed

0.5 m/s 22m/s

Average time per boulder

21.7S 0.1s

Table 1: Comparison of accuracy and performance on the test data set.

See section 4.3 for details on the metrics presented

28

After processing each window separately, we
reassemble outputs corresponding to the input
by mapping each locally detected boulder into
its global coordinate. Due to the sliding window
approach, many boulders will be identified several
times. To keep only the best segmentation mask
for the identified boulders, we use non-maximum
suppression (NMS) that filters overlapping objects
based on their intersection over union (loU) and
keeps only the best scoring.

During inference, we also collect all available
metadata relevant to each identified boulder. This
is currently logfile name/path, id, position, confi-
dence and »pseudo«-area. The »pseudo«-area is
calculated as the area covered by the estimated
segmentation mask and is for sorting purposes
assumed to correlate with the actual size of the
boulder. From the metadata, human operators
can further filter and sort the outputs to obtain
the desired output. Finally, the information can be
compiled into a report, e.g., as CSV or PDF files.

Annotated
Fully identified

Annotated
Partly identified

Non-annotated
True positive

Non-annotated
False positive

Non-annotated
True positive

Fig. 5: Representative samples from the test data set. True
positives have masks that capture the shape of targets
(boulder and shadow) with high accuracy. False positives fail
to capture the entire object or estimate objects at positions
where there are none. Annotated masks are shown in faded
white as an overlay. Each example has been resized, and
sizes are therefore not relative to each other

the complete processing steps from input to out-
put on a single GPU is 13 s. The input has a length
of 200 m, a width of 80 m and a resolution of
0.1 m/px. The amount of identified boulders does
not affect the processing time.

4.3 Comparison against human-annotated data
To provide quantitative metrics on the perfor-
mance of our model, we compare the targets
found by our model against the human-annotated
curacy with which our model identifies targets an-
notated in the test data set, i.e, the proportion of
annotated targets the model correctly identifies.
Since our model further identifies many targets
beyond the annotated targets, we also provide
the accuracy of these being correct, i.e, the pro-
portion of correctly identified non-annotated tar-
gets. The model gain denotes the gain or increase
in identified targets compared to the number of
annotated targets, e.g., a gain value of X 62 refers
to the model identifying X 62 more targets than
have been annotated. Finally, we report the pro-
cessing speed as a measure of metre per second
using a single GPU and time spend on generat-
ing segmentation masks using human annotators
and our model. We note that these measures are
an average over our test data set collected using
a window stride of 100 px and are not entirely
representative. They are more dependent on sen-
sor/vehicle/data parameters than the number of
boulders identified. The column »Non-filtered« de-
notes that all outputs from the model have been
used without modification, and »Filtered« refers to
the outputs being filtered. The filtering is currently
removing identified boulders with an area smaller
than the smallest of the annotated targets.

In Fig. 5 we show representative examples of
the different cases, which is the basis for the met-
or non-annotated, are shown as masks that cap-
ture targets’ shapes (boulder and shadow) with
high accuracy. We note that the estimated masks
typically enclose the objects better than our an-
notated masks (shown in faded white as overlay).
False positives, annotated or non-annotated, are
shown as objects only partly identified or by es-
timated masks that do not cover any objects. We
note that false positives relate mostly to small ar-
eas, further supported by the increase in accuracy
of the filtered metrics as shown in Table 1.

5 Conclusion

We have presented our preliminary work on au-
tomatic boulder identification in side-scan so-
nar data. With our method, we currently identify
prominent boulders by estimating a segmentation
mask that accurately captures the entire area of the
boulder and its shadow. As our model is based on
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instance segmentation, we retrieve and analyse
each boulder separately to provide each detected
target with metadata used for filtering, sorting and
report generation purposes. Using only a single
GPU, our model can process several kilometres of
side-scan data and identify thousands of boulders
in less than a minute. We envision that even in its
current state, our presented work has the potential
to drastically reduce the effort of industry profes-
sionals even if human-in-the-loop is still required
to some extent.

6 Future work

In improving our method, several steps may be
considered. To improve the accuracy, we can use
our current model to label our entire data set of
more than 1500 km side-scan sonar data in a semi-
supervised manner. This potentially generates mil-
lions of annotated boulders to retrain on instead
of the 1300 targets used for this work. To report
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Erzeugung von synthetischen
Seitensichtsonar-Bildern mittels
Generative Adversarial Networks
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Fir die Anwendung von Deep-Learning-Methoden zur automatischen Auswertung
von Daten bildgebender Sonare stellt die nicht vorhandene Verfligbarkeit groBerer
Trainingsdatenmengen nach wie vor ein Problem dar. In den letzten Jahren wurden
jedoch sogenannte Generative Adversarial Networks (GAN) als ein Werkzeug aus dem
Bereich Deep Learning fiir die Erzeugung synthetischer Daten entwickelt. In dieser
Arbeit wird untersucht, inwieweit sich GANs zur Erzeugung kinstlicher Sonarbilder
eignen. Um das GAN auch mit wenigen Beispielen trainieren zu kdnnen, wird eine Art
des Transfer-Lernens mit Hilfe von einfachen simulierten Bildern entwickelt. Es zeigt
sich, dass die Performance eines Klassifikators durch Hinzunahme der kiinstlichen Bil-
der gesteigert werden kann.
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Seitensichtsonar | Autonomes Unter-Wasser-Fahrzeug | Deep Learning | generative Netzwerke | Transfer-Lernen
side-scan sonar|autonomous underwatervehicle|deep learning| generative adversarial network| transfer-learning

A remaining problem is the lack of large-scale sonar image data sets when applying deep learning algo-
rithms for the automatic analysis of these data. However, over the past few years, generative adversarial
networks (GAN) where developed as a tool for generating synthetic data. This work investigates how
GANSs can be used to generate synthetic sonar images. In order to train the GAN with only a few available
samples, a transfer-learning approach is applied which uses simple simulated images. Using the addi-
tional synthetic sonar images, the performance of a classifier can be increased.

1 Einleitung

Seitensichtsonare sind spezielle unterwasser-akus-
tische Sensoren, die unter anderem an autonomen
Unter-Wasser-Fahrzeugen (englisch: autonomous
underwater vehicle, AUV) montiert werden, um
den Meeresboden zu inspizieren und beispiels-
weise nach Objekten zu suchen. In den letzten
Jahren wurde die Erkennungsrate von Objekten in
Bildaufnahmen stetig verbessert. Grundlage hier-
fur sind maschinelle Lernverfahren, genauer Deep
Convolutional Neural Networks (CNN), mittels de-
rer heute Erkennungsraten erreicht werden, die der
des Menschen in diesen Anwendungsbereichen
entspricht (Wang et al. 2020). Sollen CNNs fur die
automatische Auswertung von Seitensichtsonar-
Bildern herangezogen werden, stellt sich jedoch
haufig das Problem einer zu geringen Datenlage
fur ein verldssliches Training. Das Sammeln von
Seitensichtsonar-Bildern von Objekten ist beson-
ders aufwendig, da im Allgemeinen die Position
von Objekten unter Wasser im Vorfeld unbekannt
ist. Auch das manuelle Auslegen von Objekten
und die anschlieSende Aufnahme von Sonardaten
ist, aufgrund der Zeit- und Kostenintensitdt, nur
eine dullerst aufwendige Moglichkeit, einen um-
fangreichen und variablen Datensatz zu erstellen.

Wahrend also die Technologie zur Unterstltzung
der Auswertung aufgenommener Sonardaten im-
mer weiter voranschreitet, ist deren Anwendung
auf Sonardaten als recht schwierig einzustufen, da
nicht gentigend Daten fur das Training moderner,
selbstlernender Algorithmen vorhanden sind.
Andererseits haben sich in den letzten Jahren
generative neuronale Netze, sogenannte Gene-
rative Adversarial Networks (GAN) (Goodfellow et
al. 2014), aus dem Bereich des Deep Learnings als
eine gute Methode zum Generieren kinstlicher
Bilder erwiesen (Isola et al. 2017; Karras et al. 2020).
GANs wurden bereits in anderen Arbeiten zur Ge-
nerierung von Seitensichtsonar-Bildern (Steiniger
et al. 2020) oder Synthetisches-Apertur-Sonar-Bil-
dern (Reed et al. 2019) verwendet. Die Herausfor-
derung, die sich jedoch ergibt, ist, dass auch GANs
auf kiinstlichen neuronalen Netzen beruhen und
entsprechend einen umfangreichen Trainingsda-
tensatz bendtigen. Als Losungsansatz greifen die
beiden genannten Verfahren daher zundchst auf
Simulationsdaten zurtick. Fir die Simulation kann
beispielsweise ein Raytracer verwendet werden.
Reifens und zum anderen ein mit dem Raytracer
POV-Ray simuliertes Bild. Die simulierten Bilder
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Abb. 1: Beispiel eines Reifens in einem Seitensichtsonar-Bild
und simuliert mit POV-Ray (rechts)

weisen zwar die in einem echten Seitensichtsonar-
Bild zu erwartenden geometrischen Formen fur
die Highlight- und Schattenregionen auf, enthal-
ten aber weder weitere Details noch anwendungs-
typisches Rauschen oder Ahnliches.

Reed et al. verwenden in ihrem Ansatz ein GAN,
um die simulierten Bilder in Sonarbilder zu »Uber-
setzen«. Im hier vorgestellten Ansatz werden die
simulierten Bilder stattdessen in einem ersten
Schritt fur ein Vortrainieren des GANs verwendet.
Dadurch lernt das kinstliche neuronale Netz, die
geometrischen Formen der Highlight- und Schat-
tenregionen zu erzeugen. Erst in einem zweiten
Schritt, dem Transfer-Lernen, werden die echten
Sonarbilder zum Trainieren verwendet, sodass das
GAN die Verteilung der Pixelintensitdten in den je-
weiligen Regionen im Bild lernt.

2 Aufnahme der Seitensichtsonar-Bilder

Fur die Datenerzeugung wird das AUV SeaCat Mk
der Atlas Elektronik GmbH verwendet (Kalwa 2019).
Das AUV bietet die Moglichkeit, zuvor geplante
Missionen weitgehend autonom abzufahren und
dabei Messdaten mit Hilfe unterschiedlicher Sen-
soren zu erzeugen. Das AUV ist mit einem Doppler
Velocity Log fir die Messung der Geschwindigkeit
Uber Grund, einem Drucksensor fur die Messung
der Tiefe und einem GNSS-System zur Positionie-
rung Uber Wasser ausgestattet. In Kombination mit
einem hochgenauen Inertial Navigation System
(INS) ermoglichen diese Sensoren eine Positionier-
genauigkeit des AUVs von bis zu 0,1 % der unter
Wasser zurlickgelegten Wegstrecke, wodurch eine
prazise Lokalisierung von Zielobjekten unter Was-
ser moglich ist. AulSer dem Seitensichtsonar Edge-
tech 2205 am Rumpf fUhrt das AUV in seinem mo-
dularen Sensorkopf eine Kamera mit kinstlicher
Beleuchtung, ein hochauflésendes Facherecholot
und einen parametrischen Sub-Bottom-Profiler
mit. Das Seitensichtsonar erlaubt grundsatzlich
das gleichzeitige Scannen mit zwei unterschied-
lichen Frequenzen. Die Daten dieser Messung
wurden mit einer Frequenz von 850 kHz erhoben,
die eine Auflésung im Zentimeterbereich und eine
Reichweite von 75 m zu jeder Seite erlaubt.

In der Regel werden parallel zur Aufnahme der
Daten mit dem Seitensichtsonar Bathymetriedaten
mit einem Fécherecholot aufgenommen. Je nach
Auflosung der Daten besteht die Moglichkeit, Gber
die einfache Bathymetrie hinaus 3D-Punktwolken
von Objekten zu generieren (Heuskin 2020). Mit
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Abb. 2: AUV SeaCat Mki1 der Atlas Elektronik
beim Zu-Wasser-Lassen

Abb. 3: Beispiel eines aufgenommenen
Seitensichtsonar-Bildes

einer experimentellen Signalverarbeitungskette
werden die wahrend einer Mission aufgenomme-
nen Rohdaten des Seitensichtsonars in Sonarbilder
gewandelt.

Die aus den erstellten Sonarbildern extrahierten
die fUr die spatere Anwendung der neuronalen
Netze relevante Aufteilung in Trainings- und Test-
beispiele angegeben. Es ist zu erkennen, dass vor
allem fir die Klasse Reifen besonders wenig Bei-

Anzahl der Anzahl der

Testbeispiele

Trainingsbeispiele

Reifen 18 17
Stein 36 210
Hintergrund 36 210

Tabelle 1: Annotierte Objekte und Anzahl dieser im Trainings-
bzw. Testdatensatz
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spiele zur Verfigung stehen. Synthetische Bilder
dieser Klasse kdnnen genutzt werden, um dieses
Ungleichgewicht auszugleichen.

3 Kiinstliche Sonarbilder fir

die Klassifikation

Wie zuvor bereits geschrieben, sind insbesonde-
re Objektklassen, die sehr selten auftreten, eine
zusatzliche Herausforderung fur Lernverfahren.
In dieser Arbeit widmen wir uns daher der Syn-
these von Bildern derartiger Klasse, in diesem Fall
also der Klasse Reifen. Obwohl sich diese Arbeit
speziell mit dem Objekt Reifen befasst, lasst sich
das Verfahren auch auf beliebige andere Objekte
Ubertragen. Fur komplexere Objekte wird jedoch
gegebenenfalls die Simulation zum Erzeugen der
Daten fir das Vortrainieren aufwendiger.

Der entwickele Trainingsprozess des GANs mit
Vortrainieren und Transfer-Lernen ist in Abb. 4
schematisch dargestellt. Das GAN ist aus zwei
neuronalen Netzen aufgebaut: dem Generator
und dem Discriminator. Der Generator erhalt als
Eingangsdaten ein Bild mit zufdllig verteilten Pi-
xelintensitaten. Das formulierte Lernziel besteht

darin, diesen Eingang in ein Sonarbild zu trans-
formieren. Der Discriminator hingegen sieht ent-
weder ein echtes Bild aus dem Trainingsdatensatz
oder ein vom Generator erzeugtes Bild und weist
dem jeweiligen Bild eine Wahrscheinlichkeit P zu,
die angibt ob er das Bild fur ein echtes Bild (P = 1)
oder generiertes Bild (P = 0) halt. Wahrend des Trai-
nings ist das Ziel des Generators, den Discriminator
glauben zu lassen, dass das generierte Bild echt ist.
Somit ndhert sich die Verteilung der Pixelintensi-
tdten der generierten Bilder im Laufe des Trainings
immer mehr der der Trainingsdaten an.

Beim hier betrachteten Transfer-Lernen besteht
der Trainingsdatensatz zunadchst aus 10 000 simu-
lierten Bildern. In der Simulation werden Parame-
ter wie Abstand zum Sonar oder Grol3e des Ob-
jekts variiert, um einen differenzierten Datensatz
die generierten Bilder nach diesem Vortrainieren
eine deutliche Highlight- und Schattenregion auf,
wie sie flr Seitensichtsonar-Bilder zu erwarten ist.
Fur das Transfer-Lernen wird dieses GAN mit den
echten Seitensichtsonar-Bildern trainiert, wobei
zuvor die Gewichte der letzten Schicht im neuro-

Rauschen

Trainings-
daten

Trainings-
daten

Generator

Generator

Discriminator <

echt

generiert

Training .
echt 3
Trainings-
generiert daten
(a) (b ‘
Generator
D J ——
Training
echt — H
Discriminator < Trainings-
generiert daten

(0)

Abb. 4: Prozess des Transfer-Lernens. (a) Das GAN generiert nur Rauschen. (b) Das vortrainierte GAN generiert simulierte Bilder.
(c) Das vortrainierte GAN wird mit echten Sonarbildern trainiert. (d) Das finale GAN generiert synthetische Sonarbilder

Generator

echt

Discriminator

generiert

(d)
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nalen Netz des Discriminators neu initialisiert
werden, um eine Uberanpassung und so ein Ver-
schwinden des Gradienten wahrend des Trainings
GAN nicht nur die geometrische Form, sondern
auch die Pixelintensitaten in dem Bild realistisch
generiert.

Das beschriebene Verfahren, basierend auf der
Methodik des Transfer-Lernens, verringert das fur
GANs typische Problem des Mode-Collapse. Da
nur wenige reale Trainingsbeispiele zur Verfligung
stehen, wirde ein direktes Lernen der Transfor-
mation von Eingangsrauschen zu Sonarbild dazu
fuhren, dass das GAN in einen Zustand kollabiert,
in dem lediglich ein (nicht zwingend realistisches)
Bild unabhdngig vom Rauschen generiert wird.
Der Discriminator lernt nur noch dieses eine Bild
zurlickzuweisen. Daraufhin muss der Generator
seine Transformation nur minimal dndern, um den
Discriminator zu tduschen. Somit fuhrt ein Fortset-
zen des Trainingsprozesses nicht mehr aus diesem
Zustand des Mode-Collapse heraus. Die einzige
Losung ist es, das gesamte Training neu zu starten.
Um dies zu umgehen, muss das Kollabieren des
GANs verhindert werden.

Aber: Obwohl das Transfer-Lernen zwar das
Problem des Mode-Collapse verhindert, kann die
Variabilitdt in den generierten Daten dennoch
gering sein. Wie verschieden die Daten, die von
dem GAN generiert werden, letztlich sind, ist da-
bei von vielen Faktoren abhangig und muss noch
genauer untersucht werden. Das Verhindern
des Kollabierens des GANs hin zu einer einzigen
Konfiguration der Ergebnisse stimmt jedoch zu-
versichtlich, dass durch eine Anpassung der Para-
meter auch die gewlnschte Variabilitdt erreicht
werden kann.

4 Performance des Klassifikators

Ziel der Erzeugung kinstlicher Sonarbilder ist es
letztendlich, die Performance eines Klassifikators
durch die zusatzlichen Daten zu verbessern. Fir

Anzahl synthetischer Bilder ACCp, e
0 0,6298 0,6302
9 0,6388 0,6379
18 0,6376 0,6364
36 0,6379 0,6368

Tabelle 2: Klassifikationsperformance des CNN fur
verschieden starke Augmentierungen

diese Klassifikation wird im Folgenden ein CNN
verwendet. Die Augmentierung des Trainingsda-

Die Performance des CNN wird durch die aus-
balancierte Genauigkeit (englisch: balanced ac-
curacy, ACCpg)) und den Makro-F1-Wert (englisch:
gibt die Performance fur eine unterschiedliche
Anzahl an synthetischen Bildern im augmentier-
ten Trainingsdatensatz an. Mit 18 synthetischen
Bildern ergibt sich ein ausgeglichener Trainings-
datensatz. Alle vier Experimente wurden mit zehn
verschiedenen Initialisierungen des CNN durch-
riken aufgelistet.

Das Hinzunehmen der synthetischen Daten
zeigt eine leichte Steigerung in beiden Metriken
von circa einem Perzentil. Es ist jedoch auch zu
erkennen, dass mehr kinstliche Bilder nicht zu
einer weiteren Steigerung fUhren. Dies ldsst darauf
schliel3en, dass die Variabilitdt in den generierten
Daten nicht ausreichend ist, um einen grof3en syn-
thetischen Datensatz zu erzeugen. Es ist hierbei je-
doch zu beachten, dass zum Trainieren des GANs
—entsprechend der Ausgangsproblematik von nur
sparlich verflgbaren Trainingsdaten — lediglich 18
reale Seitensichtsonar-Bilder verwendet wurden.

Die Performancesteigerung durch das Ver-
wenden der synthetischen Daten ist messbar,

Rauschen

Generator

fur die Klassifikation mit vom GAN erzeugten Daten

Abb. 5: Augmentieren des Trainingsdatensatzes

Reifen
CNN Stein

Hintergrund

Trainings-
daten
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verwandelt dabei jedoch — umgangssprachlich
formuliert — einen passabel arbeitenden Detek-
tor keineswegs in ein Patentrezept. Wahrend fir
das Trainieren von CNNs zur automatischen Aus-
wertung von Seitensichtsonar-Bildern die ausgie-
bige Erfassung von Daten nach wie vor das Mittel
der Wahl darstellt, lassen sich mit synthetischen
Daten gegebenenfalls noch ein paar Register zie-
hen, falls die Datenlage nicht verbessert werden
kann.

5 Zusammenfassung und Ausblick

In diesem Artikel wurde ein Verfahren vorgestellt,
um mittels Methoden des maschinellen Lernens
synthetische Seitensichtsonar-Bilder zu erzeugen.
Speziell wurde ein GAN mit Bildern eines Raytra-
cers vortrainiert und anschlielend ein Transfer-
Lernen mit echten Sonarbildern durchgefihrt.
Die synthetischen Bilder weisen die zu erwarten-
den geometrischen Formen und Pixelintensitaten
auf. Es konnte gezeigt werden, dass die Verwen-
dung dieser synthetischen Daten zusatzlich zum
Trainingsdatensatz eines Klassifikators die Perfor-
mance steigern kann.
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Autonomous operations
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Al is enabling a transformation toward
autonomous hydrographic operations

An article by SARAFINA MCPHERSON KIM@

It has been possible to advance Al thanks to factors like increased access to massive
computing power. In the same way, the increase in automation, which Al facilitates,
advances the development of unmanned, autonomous hydrographic operations.
This is an exciting prospect, as the advantages of such operations are many: efficien-
cy gains, reduction in costs in the form of vessel time and man hours, as well as the
minimisation of environmental impacts. We are working towards autonomous hydro-
graphic operations by developing software tools, which provide automatic, real-time
data processing and navigation-aiding. In 2017, we established a dedicated software
development team with engineers specialising in machine learning, machine vision
and deep learning. The first official EIVA software version utilising Al was released in
2018, when we made it possible to use NaviSuite Deep Learning for automatic inter-
pretation of data in NaviSuite Nardoa, our software bundle for pipeline inspections.
In this article, we will dive into how we are using machine learning to create software

solutions that support autonomous hydrographic operations.
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Die Weiterentwicklung der KI wurde durch Faktoren wie den verbesserten Zugang zu massiver Rechen-
leistung maoglich. In gleicher Weise treibt die zunehmende Automatisierung, die KI ermdglicht, die Ent-
wicklung unbemannter, autonomer hydrographischer Anwendungen voran. Dies ist eine spannende
Perspektive, denn die Vorteile solcher Anwendungen sind vielfaltig: Effizienzsteigerung, Kostenreduzie-
rung in Form von Schiffszeit und Mannstunden sowie die Minimierung von Umweltauswirkungen. Wir
arbeiten auf autonome hydrographische Anwendungen hin, indem wir Software entwickeln, die eine
automatische Echtzeit-Datenverarbeitung und Navigationshilfe bietet. Im Jahr 2017 haben wir ein eige-
nes Software-Entwicklungsteam mit Ingenieuren gegriindet, die auf maschinelles Lernen, maschinelles
Sehen und Deep Learning spezialisiert sind. Die erste offizielle EIVA-Software mit Kl wurde 2018 veroffent-
licht, als wir die Nutzung von NaviSuite Deep Learning fir die automatische Interpretation von Daten
in NaviSuite Nardoa, unserem Softwarepaket fUr Pipeline-Inspektionen, erméglichten. In diesem Artikel
stellen wir vor, wie wir maschinelles Lernen nutzen, um Softwarelésungen zu erstellen, die autonome

hydrographische Anwendungen unterstitzen.

1 Teaching computers to name

what they see

NaviSuite Deep Learning is a software tool which
can identify objects from images. It is based on a
neural network model, which is trained on thou-
sands of images from various providers, typically
NaviSuite users. To train the network, a human
must manually mark objects of interest in images
anything from a pipeline joint to a particular spe-
cies of coral.

In a project with Sdo Paolo University, we are
training NaviSuite Deep Learning to identify coral
species and their habitats. Currently, an expert
from the university is marking the various coral
species in images to teach the neural network
to identify them. Once developed, this NaviSuite
Deep Learning capability may be used for moni-

toring and maintaining sustainable marine ecosys-
tem services.

We are in the process of planning another ap-
plication: monitoring mussel farms to ensure they
are operating optimally. This is for a developmen-
tal project in partnership with Wittrup Seafood,
WSP and several others, and with the support of
the Danish ministry of environment and food. So
far, we have designed a set-up to perform sur-
veys of mussel farms, and the next step is to train
NaviSuite Deep Learning to identify important fac-
tors, such as how many mussels are growing in dif-
ferent locations, whether they are sick or if there
are pests, such as starfish, on them.

It takes a lot of time and data to teach a neural
network to recognise such complex objects. Dur-
ing the development of NaviSuite Deep Learning
for its first application: pipeline inspections, it has
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been possible for us to train it to identify over 20
different events which occur along a pipeline. For
example, it can mark pipe visibility, anodes, field
joints, debris, marine life, damage and more. This
has been possible thanks to the help of our cus-
tomers, who have shared data of their pipelines.

1.1 Putting the tool to work

There are three ways to incorporate NaviSuite
Deep Learning into your operations. Firstly, it can
be used on a cloud service hosted by EIVA, which is
typically a good solution for onshore data process-
ing staff. Secondly, it can be used on a rack server,
useful for processing on board a vessel. Finally, it
can be used on an on-board computer, which can
be integrated into an AUV or USV. The on-board
computer is ideal for autonomous operations, as
this makes it possible to let the AUV or USV change
mission based on objects detected via NaviSuite
Deep Learning.

When using NaviSuite Deep Learning, it is incor-
porated into NaviSuite software. This means that
when it identifies objects of interest, it can system-
atically organise this information for ease of use

1.2 Automatically identifying targets
on the seabed
In addition to NaviSuite Deep Learning, we have
developed other software tools for identifying tar-
gets on the seabed, such as rocks/boulders, debris
and man-made objects. Identifying such objects
is vital when planning construction on the seabed
or removing abandoned fishing gear, which harms
marine life if left in the waters. The tools can be
used in NaviModel, our software solution for data
modelling and visualisation. Objects identified
with these tools can be automatically compiled in
an intuitive overview, along with information, such
In the future, NaviModel will not only be able to
automatically register targets on the seabed, but
also register the seabed type. Together with sev-
eral customers, we are developing a tool which
uses backscatter data to segment areas of the
seabed based on their material type, for example
clay, gravel, sand or rock. These different materi-
als reflect sound with different intensities, which
can be seen and detected automatically in the
backscatter data. This is yet another way we are
developing software to make the most of available
data and support subsea operations.

2 Autonomous navigation

methods

With the ability to interpret data automatically, the
next step is to use that information to automate
navigation and survey planning. NaviPac is our
software solution for positioning and navigation
of surface and subsea vessels.
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Fig. 1: Several coral species are marked on an image, using the NaviSuite Deep Learning

Annotation Tool

Fig. 2: Events marked along 3D model of pipeline, with video views of an anode shown at the

bottom. In the upper right, you can see the full list of events

Fig. 3: The Automatic Target Recognition (ATR) tool uses a variety of NaviModel functions

to identify objects — in addition to DTMs, it can be used on side-scan sonar data, as shown

here, where two objects have been automatically registered as events, as shown in the event

window (upper right)

NaviPac currently facilitates automatic naviga-
tion through the Coverage Assist tool. This tool au-
tomatically plans navigation runlines in real-time
based on the detected depth, to ensure optimal
coverage when scanning an area. The operator
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can simply define the area to be scanned, as well
as the first runline. Then, Coverage Assist creates
the most efficient route one runline at a time. It
does so by designing the shortest route to turn,
and by following the outer limit of bathymetry
data collected on the previous line.

In its calculations, Coverage Assist considers the
vessel's turn capabilities, as well as custom cover-

age and density requirements. In other words, it
designs the optimal route for that specific ves-
sel, with that survey’s specific requirements, and
in that way adapts to ensure full area coverage

The Coverage Assist tool excels at automatically
surveying a fixed area. However, surveying an area
which could be positioned differently than ex-
pected, such as pipelines or a mussel net, requires
more navigation-aiding. For this, we can make
good use of the automatic, real-time data analysis
described in the previous section.

Currently, we are developing several methods
for autonomous underwater navigation aiding for
a variety of applications. What these methods all
have in common is that they provide automatic
positioning by tracking objects or structures. We
are also working on using Visual SLAM (simultane-
ous localisation and mapping) to provide real-time
information as an input for future autonomous
navigation.

2.1 If the computer can identify it,

it can follow it

When you wish to navigate with respect to an ob-
ject of interest, such as a pipeline, the first step is
to be able to identify it. We have now covered the
ways we use machine learning to teach the com-
puter to automatically identify an object in the
previous section — in the following we will dive
into how to use this for navigation with respect to
such objects.

In terms of navigation methods, we have made
most progress in developing methods for navigat-
ing along a pipeline, as this was our first applica-
tion for NaviSuite Deep Learning. We have devel-
oped two methods, based on sonar and video
data. In both, the idea is to track the top of pipe

2.2 Positioning by landmarks

While it is great to be able to follow an object of
interest, it is often necessary to know where you
are in the world, so that object is mapped in terms
of its global location. Just as you may see street

WP1: Relzirve Localization and 3d Structure
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| WP2.2:Visual PipelineNavigation
WP2.1: Visual Recognition of Events

WP2.3: Unigue Landmark Descriptor

Fig. 6: An illustration of how an AUV can be positioned

based on landmarks along a pipeline
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names and buildings you recognise, there are
landmarks under sea, which can help you navigate.
These landmarks can be recognised automatically
using NaviSuite Deep Learning, and then used to
position your survey platform (Fig. 6). This provides
a more dynamic way to perform automatic navi-
gation.

When looking for landmarks, there are some
objects under water, which we can use because
we know their precise global location. These can
for example be shipwrecks or points where two
pipelines cross each other. Of course, we can also
create such underwater landmarks ourselves if we
wish, by placing a marker, or marking the position
of a natural feature, such as a boulder with a rec-
ognisable shape.

There are also structures which tell us where we
are relative to somewhere else. Similar to street in-
tersections, along a pipeline there are field joints
and anodes at certain intervals. By knowing the
distance between these events, we have one
more piece of information to map our location

2.3 Navigating relative to a

moving object

The object you wish to navigate with respect to
may be in the water, rather than on the seabed.
In this case, it is advantageous to use a forward-
looking sonar (FLS). FLS is often used for obstacle
avoidance, but also excels at aiding navigation,
especially when you wish to approach an object
without colliding with it. A useful ability, since ob-
jects floating in water rarely stay in place.

One application, in which we are using FLS, is a
set-up for mussel farms. FLS is used to help navi-
gation along mussel nets while performing video
surveys of the mussels. This allows us to record a
video — without colliding with the net and harm-
ing the mussels. The video can then be analysed
by NaviSuite Deep Learning, which will be taught
to recognise important characteristics of mussel
farms, such as the amount of mussels, or occur-
rences of disease.

Another application in which FLS comes in
handy is AUV recovery. In addition to using FLS to
»seecthe AUV, we use machine learning to track its
relative location. This makes it possible to navigate
towards it precisely in order to securely capture it.
If the water is clear, video can also be used to track
the relative location of the AUV. Both with FLS and
video, the method involves using machine learn-
ing to recognise the object of interest, and then
navigating with respect to its relative position
(Fig. 8).

2.4 3D underwater vision with

only a camera

Capitalising on recent advances in computer vi-
sion, we have developed a software tool which
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Fig. 7: NaviSuite Deep Learning recognition of anodes is used to track the

position of the pipeline

Fig. 8:In the bottom screen, you can see the FLS view

of the pool with the Eelume AUV in it — the squares
show where NaviSuite software uses machine learning
to automatically register objects, namely the AUV in
the centre, as well as interference from the sides of

the pool

can create 3D reconstructions from images or
videos. To achieve this, we use a combination of
Visual Simultaneous Localisation and Mapping
(VSLAM) and machine learning. This tool has great
potential to support autonomous navigation, as
it can both map the surroundings of a vehicle, as
well as provide information about the vehicle’s
positioning.

Instead of requiring a specific hardware setup,
our VSLAM software tool is designed to utilise all
available equipment. With the right equipment,
such as a combination of cameras and a position-
ing sensor, it can actually achieve higher resolu-
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Fig. o: A sparse point cloud of a pipeline, created using VSLAM and coloured using analysis by NaviSuite Deep Learning —
the green points are the pipeline, the red are anodes and blue shows the sea bottom

DB5 S B0 A LGS BIBU@P st /99 3 Cleaning the way

: i Before autonomous navigation, and even before
automatic data analysis, the acquired data can be
automatically cleaned. With our data cleaning fea-
ture, EG3D, it is possible to do this by applying a
filter to clean sonar data in real time, during data
acquisition in NaviPac (Fig, 11).

EG3D currently cleans data using a mix of clean-
ing methods, which can be combined manually to
allow for precise automatic cleaning for a given set-
up. Each set-up will generally have its own unique
noise based on the environment and equipment,
requiring this custom data cleaning. However, we
aim to cut out this step with the help of machine
learning. We are in the process of designing an
even more automated data cleaning tool to add
to the EG3D family.

This upcoming data cleaning method uses the
tion than sonar data. For these reasons, we expect  Density-Based Spatial Clustering of Applications
VSLAM to play an essential role in the future of au-  with Noise (DBSCAN) algorithm. This clustering al-
tonomous hydrographic operations in clear water — gorithm divides data points into clusters based on
(Fig. 9 and Fig. 10). how dense an area is. In other words, data points

Fig.10: A dense point cloud showing a section of harbour wall -
created with VSLAM based on video data from an ROV

Fig. 11: An unfiltered DTM (left) and an online cleaned DTM (right) displayed simultaneously

in NaviPac Helmsman's Display
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which are close to each other may be grouped
in clusters. You can see in the example in Fig. 12
how such clusters might look. While the seabed
and pipe are grouped together, the noise around
the pipe consists of many clusters, which can then
all be grouped together for removal through easy
instructions given in the EG3D tool.

4 The future of autonomous
hydrographic operations

Machine learning is helping us to optimise all
steps in hydrographic operations, from naviga-
tion and acquisition to processing. NaviSuite
supports hydrographic operations the whole
way, as it is a single, complete software package
for virtually any subsea task. We look forward to
seeing the development of autonomous opera-
tions save NaviSuite users even more time and
money.

If you want to get involved, we are more than
happy to consider new projects or discuss current
ones. We often need help beta-testing our solu-
tions, so whether you are interested in trying out
autonomous navigation or VSLAM computer vi-
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Fig. 12: Here, through the colouring, you can see the many different clusters

registered by DBSCAN

sion, don't hesitate to reach out. We are also thank-
ful for any data, which can help us to help train
NaviSuite Deep Learning. This could be of pipe-
lines, corals, mussels — or maybe you have a whole
new application in mind? Get in touch. //
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»Die riesigen
Wasseroberf
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-lachen unterhalb der
ache bilden das perfekte
Kl-basierte Ansatze«

Alexander Reiterer ist Professor fiir das »Monitoring of Large-Scale Structures« an der
Universitat Freiburg. Am Fraunhofer-Institut fiir Physikalische Messtechnik IPM erforscht
und entwickelt er Multi-Sensor-Systeme und Software fiir die Uberwachung kiinstlicher
und naturlicher Objekte. Im Interview mit den HN schatzt der Spezialist fuir kiinstliche
Intelligenz in der Geodasie das Potenzial fiir Kl-basierte Ansatze bei hydrographischen

Anwendungen ein.
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Alexander Reiterer is professor for »Monitoring of Large-Scale Structures« at the University of Freiburg.
At the Fraunhofer Institute for Physical Measurement Techniques IPM, he researches and develops
multi-sensor systems and software for monitoring artificial and natural objects. In the interview with
HN, the specialist for artificial intelligence in geodesy assesses the potential for Al-based approaches in

hydrographic applications.

Wir Menschen sprechen von kunstlicher Intelli-
genz, wenn wir eine Form der Intelligenz meinen,
die eben nicht die echte, die nattrliche Intelligenz
ist. Was ist denn an dieser unechten und unnatdr-
lichen Intelligenz so anders?

Nun, wir haben auf der einen Seite den Menschen.
Er nutzt sein Gehirn, also letztlich eine biologische
Ressource, um sehr komplexe Aufgaben zu I6sen
— darunter sind sehr anspruchsvolle Leistungen
wie Sprache, Feinmotorik, analytisches Denken
usw. Auf der anderen Seite steht die Maschine, die
erst einmal Uber keinerlei Intelligenz verfligt. Das
bedeutet: Um Dinge zu tun, die auch der Mensch
kann, muss sie befahigt werden. Dafir sorgt der
Mensch — mit seiner naturlichen Intelligenz. Er trai-
niert die Maschine mit Hilfe von eigens entwickel-
ten Lernalgorithmen und nutzt grol3e Mengen an
Daten. So lernt die Maschine, Probleme zu l6sen,
Entscheidungen zu treffen, also quasi-mensch-
liche Fahigkeiten zu erlangen. Eine geistige Ent-
wicklung im Schnelldurchlauf, wenn Sie so wollen
- begrenzt auf jeweils eine bestimmte Aufgabe.
Das ist ein durchaus aufwendiger Prozess, bei dem
Algorithmen verwendet werden, die ein Selbst-
lernen ermaoglichen. Bei bestimmten Aufgaben
ist die Maschine nach diesem Lernen dem Men-
schen deutlich Uberlegen. Beispielsweise bei sehr
langwierigen und komplexen Mustererkennungs-
aufgaben, bei denen Unmengen von Daten und
Parametern im Spiel sind. Denken Sie nur an die
Identifikation von Personen in einem Gewimmel

von Menschen - kein Mensch kann hier so schnell
und zuverldssig agieren wie eine trainierte Maschi-
ne.

Wenn Sie also fragen, worin der Unterschied
zwischen einer kinstlichen und einer naturlichen
Intelligenz liegt, dann wirde ich es so formulieren:
Die Kl ist trainiert flr eine klare Aufgabe, und zwar
von Menschen. Die Kapazitat einer Kl kann mit
der heute verfligbaren Rechenpower riesig aus-
gelegt werden. Das menschliche Gehirn kénnen
wir nicht erweitern und beliebig aufristen. Und:
eine KI ermudet nicht. Sie kann in stundenlanger
Rechenarbeit sehr anstrengende Aufgaben zuver-
lassig erledigen, logisch richtige Entscheidungen
treffen. Diese Vorteile der Kl sind offensichtlich.
Aber das sollte uns nicht frustrieren. Erstens, weil
es jeweils Menschen sind, die eine Kl erschaffen.
Und zweitens, weil das menschliche Gehirn fahig
ist zu Kreativitat, Intuition, zu Emotionen und zu
einem eigenen Bewusstsein. Dartber verflgt kei-
ne KI.

Wo liegen die Urspriinge von KI? Was war anfangs
die Hoffnung?

Die grundsatzliche Vorstellung, menschliches
Denken technisch nachbilden zu kénnen, geht
sehr weit zurlick. Die Aufkldrung beflligelte ratio-
nales, technisches Denken und die Wissenschaft.
Die Vorstellung von Mensch-Maschinen, Automa-
ten und Robotern gehen zuriick bis ins 18. Jahr-
hundert. In der ersten Halfte des 20. Jahrhunderts
wurden dann die ersten Rechenmaschinen ent-
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wickelt, die Vorldufer der Computer. Der Begriff
»Kunstliche Intelligenz« tauchte erstmalig in den
50er-Jahren auf. Die Hoffnungen waren teils gren-
zenlos und gingen bis hin zur Vorstellung, dass
Kl das postbiologische Zeitalter einleiten wird,
in dem das biologische Gehirn dereinst durch
Technik ersetzt wird. Solche Szenarien werden als
»starke Kl« bezeichnet — also die Vorstellung, dass
Kl dem Menschen immer dhnlicher und am Ende
ebenblrtig wird. Viele Romane und Filme in der
zweiten Halfte des 20. Jahrhunderts zeigen ja, wie
das Thema Kl die Menschen inspiriert. Sie zeigen
aber auch, welche Befiirchtungen und Angste es
hervorruft. Die Vorstellung, eine Kl kénne dem
Menschen immer dhnlicher werden, ihn letztend-
lich beherrschen, ist zu einer verbreiteten Dysto-
pie geworden.

Aber Sie haben nach Hoffnung gefragt: Aus
meiner Sicht liegen die Chancen in der sogenann-
ten »schwachen Kl«. Damit ist gemeint, bestimmte
komplexe Aufgaben mit Hilfe von Algorithmen zu
|6sen. Wir sehen ja die erfolgreiche Anwendung
von Kl schon seit einigen Jahren. Viele von uns
nutzen sie im Alltag. Denken Sie an Computerspie-
le oder automatische Ubersetzungsprogramme.
Stark ist KI'in der Mustererkennung und im Aus-
werten grol3er Datenmengen. Dabei denke ich an
die medizinische Diagnostik, an die Modellierung
von Klimadaten oder auch an die Qualitatskontrol-
le in der industriellen Produktion. Hier gibt es so
viele Moglichkeiten, Dinge effizienter und besser
zu machen und damit den Menschen nicht nur zu
unterstltzen, sondern ihn zu entlasten bzw. in sei-
ner Entwicklung sogar zu fordern.

Kl gibt es schon eine Weile, warum ist Kl pl6tzlich
so ein Hype?

Das liegt ganz wesentlich an den enormen Fort-
schritten bei der Hardware, vor allem unglaublich
leistungsfahige Grafikkarten und Prozessoren, die
in den vergangenen zehn Jahren auf den Markt ka-
men. Die Gaming-Industrie war hier Treiber einer
Entwicklung, die nun die Industrie befligelt und
der Kl sehr viele Moglichkeiten erdffnet. Und na-
turlich wird seit geraumer Zeit sehr intensiv zum
Thema Kl geforscht, allen voran in den USA, in
China und inzwischen auch hier bei uns. Der Hype
wurde getrieben durch die Erfolge, die ja heute je-
dem einzelnen von uns zuganglich sind und grofle
gesellschaftliche Relevanz haben. Methoden der
Kl werden heute sehr breit in den unterschied-
lichsten Produkten eingesetzt — oftmals, ohne
dass wir es bewusst wahrnehmen. Denken Sie an
die Gesichtserkennung, die Ihr Handy entsperrt, an
die Sprachsteuerung zum Beispiel bei Google-Pro-
dukten. Da ist seit den friihen 2000er-Jahren sehr,
sehr viel Innovation passiert — und das ist fir jeder-
mann tdglich erlebbar und nutzbar.

Folgender Fall: Ein Mitarbeiter eines Vermes-
sungsburos soll 3D-Punktwolken aus einem La-
serscanner klassifizieren. Bisher hat er diese Arbeit
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selbst erledigt, er ist ja vom Fach. Jetzt liegt ihm
das Angebot eines Kl-Dienstleisters vor, der be-
hauptet, die Informatiker kbnnen diese Aufgabe
mit Hilfe kinstlicher neuronaler Netze ebenfalls
erfullen, noch dazu viel schneller. Der Kollege aus
dem Vermessungsburo ist skeptisch. Was raten
Sie ihm?

Der Aufwand und damit auch die Kosten, eine KI
einzusetzen, hangt sehr davon ab, ob man auf ein
bestehendes KI-System aufbauen kann, das heil3t,
ob man fir die spezifische Aufgabe auf vorhan-
dene Trainingsdaten zurlickgreifen kann. Ist das
Problem noch weitgehend unerschlossen und es
mussen eigene Trainings-

»Alles unterhalb der Wasser-
oberfldche ist Ki-technisch
noch weitgehend uner-
schlossen. Eine riesige

Chance«

Prof. Alexander Reiterer

daten erstellt werden, muss
man prifen, ob sich der
Aufwand fUr das Trainieren
der KI lohnt. Die Entwick-
lungskosten fur gqut trai-
nierte Systeme mit hoher
Zuverldssigkeit im Sinne der
Losungsfindung  sind  mit-
unter sehr hoch. Oft suchen

N

wir aber in Messdaten auch
nach den immer gleichen Objekten, das gilt spe-
ziell fur die Klassifizierung von Umfelddaten: Hier
mussen immer wieder &hnliche prototypische
Objekte wie Stral3enlaternen, Baume, Bordstein-
kanten oder Pflastersteine erkannt werden. Da-
rauf lasst sich eine Kl sehr gewinnbringend und
mit nicht allzu aufwendigen Mitteln trainieren.
Ein weiterer Vorteil: Die klassifizierten Daten lassen
sich automatisiert weiterverarbeiten, also zum Bei-
spiel in Planungskarten oder Dokumentationssys-
teme integrieren. Die gewonnene Zeit kdnnen die
Mitarbeiterinnen und Mitarbeiter des Biros damit
verbringen, zum Beispiel die Qualitatskontrolle
weiter zu verbessern, um dann in Zukunft noch
bessere und zuverldssigere Ergebnisse erreichen
zu kdnnen. Anders sieht es bei Umgebungen aus,
die Kl-technisch noch weitgehend unerschlossen
sind. Alles unterhalb der Wasseroberflache gehort
hier meist dazu. Eine gro8e Herausforderung, aber
auch eine riesige Chance.
Sie beschéftigen sich seit vielen Jahren mit Kl in
der Geodasie. Wie wird Kl in der Geodasie bisher
genutzt?
Mich treibt das Thema Kl seit fast 20 Jahren um. Als
ich 2004 an der TU Wien im Bereich regelbasierte
Systeme promoviert habe, war das Thema maschi-
nelles Lernen gerade ziemlich out. Es bedurfte
groBer Uberzeugungsarbeit, mich auch mit kiinst-
lichen neuronalen Netzen beschéftigen zu durfen.
Aber ich war schon damals fest Uberzeugt, dass
Kl sich fur die Geoddsie absolut gewinnbringend
einsetzen lasst, da bei vielen Aufgaben unglaub-
lich viele Daten anfallen. Die Auswertung dieser
Datenmengen kann mit Kl nicht nur effizienter,
sondern auch objektiver ablaufen. Zudem werden
die Messgerate immer leistungsfahiger und pro-

duzieren Datenmengen, die der Mensch nur noch
schwer in kurzer Zeit hinreichend gut verarbeiten
kann. Wir haben an unserem Institut Laserscanner
entwickelt, die Uber zwei Millionen Messpunkte
pro Sekunde erzeugen. Die Sensoren messen von
mobilen Plattformen aus — von Messfahrzeugen
oder inzwischen auch von Drohnen - und ver-
messen so sehr grol3e Flachen. Aus den Messda-
ten das Maximum herauszuholen, das gelingt aus
meiner Sicht nur mit Hilfe von KI. Das wird auch
mehr und mehr zur géngigen Praxis. Nehmen Sie
zum Beispiel das Monitoring von Infrastruktur, mit
dem wir uns am Fraunhofer IPM beschéftigen: Hier
vermessen die Scanner und Kameras Stral3en oder
Schienen — und sammeln sehr viele Daten von den
immer gleichen Objekten. Diese Daten zu sichten,
ist fir den Menschen eine sehr monotone Arbeit,
eine Quadlerei ... Eine Kl kann hier sehr schnell und
zuverldssig gesuchte Objekte identifizieren, Fehler
und UnregelmaBigkeiten finden. Anderes Beispiel:
Wir haben ein kinstliches neuronales Netz (KNN)
auf die Erkennung bestimmter Stralenobjekte
und -oberflichen trainiert. Dieses Netz wird jetzt
genutzt, um Stralen fur den Glasfaserausbau zu
kartieren. Wo friiher mehrere Menschen geschaut,
gemessen und gezeichnet haben — »Wachst da
ein Baum? Ist dort ein Stromverteiler? Gibt es hier
Kopfsteinpflaster’ —, gibt heute das KNN diese In-
formationen aus. Und es speist diese Infos direkt
in eine Planungskarte und errechnet daraus die
glnstigste Trasse fur die Glasfaser. Der Planungs-
prozess beschleunigt sich so um ein Vielfaches.
Das ist ein grofer Fortschritt, moglich geworden
durch KI.

Welche Anwendungsfélle sehen Sie fur die Kl in
Hinblick auf den Untersuchungsgegenstand der
Hydrographie, die Gewasser?

Was die Hydrographie betrifft, stehen wir noch am
Anfang, wenn es um den Einsatz von Kl geht. Ich
sehe hier aber groles Potenzial. Meere und Flisse
sind als Schifffahrtswege wichtige Verkehrsadern
im globalen Handel, hinzu kommt eine wachsen-
de Unter-Wasser-Infrastruktur, vor allem in Form
von Offshore-Windparks. Diese Infrastruktur muss
Uberwacht werden. Gleichzeitig fuhrt der Klima-
wandel zu Verdnderungen an den Kusten. Der
Kistenschutz ist also ebenfalls auf Messdaten an-
gewiesen. Die wachsende Notwendigkeit hydro-
graphischer Daten liegt also auf der Hand. Hinzu
kommt, dass neue Messgerdte immer hoher auf-
geldste Bathymetriedaten liefern. Am Institut ar-
beiten wir beispielsweise an einem Laserscanner
fur Unter-Wasser-Messungen. Damit werden wir
die Prézision und die raumliche Aufldsung im Ver-
gleich zu Sonarsystemen jeweils um den Faktor
funf bis zehn steigern kdnnen. Solche hochaufge-
|6sten Daten ermoglichen und erfordern letztlich
auch ganz andere Methoden der Datenanalyse.
Hochaufgeloste Daten von immens grofSen Fla-
chen, wie man sie unterhalb der Wasseroberfliche
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naturgemdl’ bei vielen Anwendungen vorfinden
wird, bilden das perfekte Szenario fir Kl-basierte
Ansdtze. Bei einigen Aufgaben kann man direkt
auf bereits etablierte Entwicklungen anwendungs-
spezifischer Kl aufbauen. Risse in Betonfundamen-
ten zu identifizieren, ist bei Bauwerken an Land
und im Meer weitgehend die gleiche Aufgabe
— der Bewuchs der Bauwerke, der diese Aufgabe
vielleicht behindert, unterscheidet sich aber sehr
stark. Daneben gibt es natirlich Aufgaben, die an
Land in dieser Form nicht vorkommen und sehr
spezifisch fur Unter-Wasser-Anwendungen sind —
ein Beispiel ist die zuverldssige Erfassung und Cha-
rakterisierung von Auskolkungen.

Wie lasst sich Kl fir die Steuerung von Multi-Sen-
sor-Systemen nutzen?

Derzeit verbindet man Kl in erster Linie mit dem
Auswerten von Daten. Dieses Auswerten kann zeit-
lich deutlich versetzt, also nach der eigentlichen
Datenaufnahme erfolgen, oder auch moglichst
zeitgleich mit der Aufnahme. Wenn wir Daten auf-
nehmen und direkt, also zeitgleich analysieren,
konnen wir den sequenziellen Aufnahmeprozess
steuern — auf Basis der unmittelbaren Ergebnisse
der Datenanalyse. Es kann also quasi ein Regelkreis
gebildet werden. Die Aufnahme der Daten kann
dann beispielsweise so gestaltet werden, dass be-
stimmte Objekte mit ganz spezifischen Sensoren
erfasst werden. Denken wir zum Beispiel ans Mo-
bile-Mapping unterirdisch verlegter Infrastruktur:
Es wdre moglich, ein Georadar-System nur dann
Daten aufzeichnen zu lassen, wenn auch wirklich
interessante Infrastruktur im Untergrund zu erwar-
ten ist. Dies ware vermutlich in der Nahe von Stra-
Benlaternen oder Ampeln, wo unterirdische Lei-
tungen verlegt sind. Gelingt es, die Laterne oder
die Ampel in den Bilddaten oder den Laserscanda-
ten im laufenden Erfassungsprozess zu erkennen,
kann das Georadar-System sehr gezielt eingesetzt
werden. In eine dhnliche Richtung geht die Ano-
nymisierung von Daten in Echtzeit. Wir haben ja
beim Messen im offentlichen Raum immer das
Problem des Datenschutzes. Ideal wére es, wenn
Bilddaten moglichst bereits vor dem Speichern im
Multi-Sensor-System anonymisiert werden konn-
ten. Dies ist ein Bereich, in dem wir am Fraunhofer
IPM derzeit intensiv arbeiten und forschen. Das Ziel
ist hier ein Mobile-Mapping-System, das mit jeder
Sensorkonfiguration vollig datenschutzkonform
im offentlichen Raum unterwegs ist. Ein weiterer
sehr spannender Bereich ist die Kalibration hoch-
komplexer Multi-Sensor-Systeme. Bisher kommen
hier sehr komplizierte mathematische Modelle
zum Einsatz. Die Bestimmung aller notwendigen
Parameter flr den Kalibrationsprozess ist aufwen-
dig und mit Fehlern behaftet. Auch hier l3sst sich
der Prozess mit Hilfe von KI effizienter gestalten
— auch daran arbeiten wir derzeit am Fraunhofer
IPM und an meiner Professur an der Universitat
Freiburg.
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Wie lange muss man ein KI-System trainieren? Wo-
ran kann man festmachen, dass genug trainiert
wurde?

Das hangt direkt von der Komplexitdt der Aufgabe
ab. Wenn wir beispielsweise von der Mustererken-
nung sprechen, mit der wir uns beschaftigen: Su-
cheich ein rotes Quadrat in einem Set unterschied-
licher Formen, soist das eine einfache Aufgabe, bei
der das neuronale Netz einige wenige Parameter
lernen muss. Das geht sehr schnell. Fur die Analyse
von StraBenumgebungen, die ich bereits erwahn-
te, haben wir um die Hunderttausend Bilder aus-
gewertet. Laternen, Briefkdsten oder Kanaldeckel
kénnen unterschiedliche Formen haben, es gibt
viele Arten von Hecken, unterschiedliche Gro3en
von Pflastersteinen — und nicht zuletzt verschiede-
ne Jahreszeiten, und damit Baume mit und ohne
Laub ... All das mussen wir der Kl antrainieren.
Dazu muissen Beispielbilder »annotiert« werden,
das heil’t, die Objekte darin werden markiert und
verschlagwortet. Das ist eine muhselige manuelle
Arbeit, an der bei uns ein 50-kdpfiges Team Uber
zwolf Monate gearbeitet hat. Ein solcher Trainings-
datensatz ist daher ein wertvolles Gut. Je besser
er ist, desto zuverlassiger ist die Objekterkennung.
Bei unseren Stral3endaten liegen wir bei einer Er-
kennungsgenauigkeit von Uber 90 Prozent. Um
den Prozess effizienter zu gestalten, arbeiten wir
inzwischen auch an Kon-
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zepten, um Trainingsdaten
synthetisch  zu erstellen.
Dahinter steckt ein Ansatz
mit enormem Potenzial. Wir
konnten so perspektivisch
sehr schnell KI-Systeme um-
setzen flr spezifische Auf-
gabenstellungen, bei denen
das Erfassen und Annotie-

Datenanalyse«

Prof. Alexander Reiterer

»Immer hoher aufgeldste
Bathymetriedaten
ermaglichen und erfordern
ganz andere Methoden der

ren von Trainingsdaten sehr

aufwendig oder sogar unmoglich wére. Damit
werden solche Systeme in Zukunft auch fur kleine
und hochspezialisierte Firmen — wie sie im Bereich
der Hydrographie auch existieren — erschwinglich
und interessant.

Wie stellt man sicher, dass die Ergebnisse, zu der
eine KI gekommen ist, wissenschaftlich profund
sind? Wie ldsst sich eine Qualitdtsaussage ma-
chen?

Am Ende zéhlt das Ergebnis, und das lasst sich in
den meisten Fallen sehr gut evaluieren. Aber zuge-
geben: Der Aufwand fir eine Evaluierung ist hoch.
Prinzipiell verwenden wir Referenzsysteme oder
Referenzdatensdtze, um die Qualitat zu beurteilen,
mit der eine Kl arbeitet. Insofern ist das Vorgehen
vergleichbar mit der Art, wie wir die Leistung eines
Menschen beurteilen. Das Referenzsystem oder
der Referenzdatensatz muss die Anwendung und
die gewulnschte Qualitdt hinreichend représen-
tieren. Dies kann zum Beispiel ein Datensatz von
Bildern sein, in denen gesuchte Objekte von gut

L~
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geschulten Fachleuten markiert und vordefinier-
ten Klassen zugeordnet wurden. Das Ergebnis der
Kl wird dann mit diesem Bilddatensatz verglichen
und geometrische Abweichungen werden be-
rechnet. Daraus lassen sich eindeutige Qualitats-
malSe bestimmen, die objektiv und auch zwischen
verschiedenen Anwendungen vergleichbar sind.
Naturlich lassen sich mit dieser Methode auch
KI-Systeme untereinander vergleichen. Etwas
komplexer wird es, wenn sich die Unterschiede
zwischen einem menschlichen Experten und der
Kl nicht mehr in Qualitdtsparameter kleiden las-
sen, wenn es also kein klar definiertes Referenz-
system gibt. Denken Sie zum Beispiel an eine
klassische Aufgabe aus dem Industriedesign: Was
macht einen ergonomisch perfekten, dsthetisch
maoglichst ansprechenden, gut zu produzieren-
den, kostenguinstigen Turgriff aus? Da gehen die
Einschatzungen und Parameter auseinander, sind
also verhandelbar. Das muss die Kl abbilden; sie
muss hier weichere Kriterien berlcksichtigen. Statt
einer starren Referenzbasis wird hier mit breiteren
Referenzgruppen gearbeitet, sodass am Ende im
Schnitt die beste, schonste, praktischste ... L6-
sung herauskommt, die dann als Referenz gilt. Je
schwieriger die mathematische Beschreibung der
Qualitdtsmerkmale, desto schwerer fdllt die ob-
jektive Beurteilung der Ergebnisse. Das Problem
haben wir aber auch bei der Beurteilung durch
menschliche Expertinnen und Experten bzw. bei
Ergebnissen und Produkten, die vom Menschen
geschaffen wurden.

Kl hat oft etwas von einer Blackbox. Da passiert ir-
gendwas, doch die Frage ist, was da vor sich geht
und wie das Ergebnis zustande kommt. Oft weil3
man es nicht, der Losungswegq ist nicht nachvoll-
ziehbar, das Ergebnis nicht reproduzierbar. Klingt
nicht gerade nach einem wissenschaftlichen An-
satz, oder?

So wurde ich das nicht sehen. Mit dem gleichen
Recht kénnte man ein Gehirn als Blackbox be-
schreiben — man weil} nie recht, was der andere
denkt. Wer sich auskennt, kann sehr genau wissen,
was in einer Kl vor sich geht: Ein Algorithmus ist
anhand bestimmter Kriterien auf eine Entschei-
dung trainiert. Wer sich

»KI-Systeme werden in
Zukunft auch fiir kleine und
hochspezialisierte Firmen der
Hydrographie erschwinglich
und interessant

Prof. Alexander Reiterer

tiefer damit beschaftigt,
kann diese Kriterien und
die Entscheidungsvorgaben
kennenlernen - wenn sie
denn offengelegt werden.
Natdrlich braucht es dazu
mathematisches Vorwissen
und Wissen Uber die ver-
wendeten  Trainingsdaten.
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Aber ohne Wissen verste-
hen wir vieles nicht in unserer hochentwickelten
Gesellschaft. Ohne ein gut ausgestattetes Labor
und Kenntnisse in Chemie weil’ ich auch nicht,
was in meiner Backmischung drin ist. Es sei denn,

ich verlasse mich auf die Zutatenliste. Und was die
Reproduzierbarkeit und Wissenschaftlichkeit be-
trifft: Die Ergebnisse einer Kl-basierten Aktion sind
in hohem MaRe reproduzierbar und daher auch
klar wissenschaftlich evaluierbar. Die meisten Kl-
Systeme lassen sich heute gut auf der Basis frei zu-
ganglicher Datensatze wissenschaftlich beurtei-
len. Aber ich verstehe, worauf Sie mit lhrer Frage
wahrscheinlich abzielen. Der Einsatz von Kl, bei-
spielsweise in den sozialen Medien oder bei der
Gesichtserkennung, ist vielen Menschen unheim-
lich und birgt ja auch ganz klar grof3e Risiken wie
zum Beispiel Deepfakes oder Uberwachung. Und
natlrlich ergeben sich in bestimmten Bereichen
auch schwierige ethische Fragen. Das mussen wir
kritisch im Blick haben. Die EU hat das Thema vor
diesem Hintergrund ja auch aufgegriffen und ers-
te Vorschldge zur Regulierung gemacht. In vielen
Gebieten, in denen wir in der Wissenschaft unter-
wegs sind, sehe ich solche Risiken nicht. Dazu ge-
hort auch die Messtechnik und im Speziellen die
Geoddsie.

Was meinen Sie, kann Kl eines Tages ganz intuitiv
von allen genutzt werden? Oder ist es heute schon
so weit, nur wir haben es noch nicht mitbekom-
men?

Letzteres, ganz klar. Jeder, der schon einmal Uber-
setzungssoftware, einen Schachcomputer oder
ein Computerspiel genutzt hat, weil3, dass Kl ganz
hervorragend funktionieren kann und man intuitiv
damit umgehen kann bzw. nicht wirklich merkt,
warum etwas so gut funktioniert. Darum wird ja
auch kein Geheimnis gemacht. Ganz im Gegenteil:
Wo Kl drin ist, steht heute immer ofter auch ganz
grof3 Kl drauf. Zumindest in der Wissenschaft ist
das so, und das wird sich meines Erachtens auch
durchsetzen, wenn klar ist, zu welchem Zweck eine
Kl eingesetzt wird. Um noch einmal bei der Mus-
tererkennung zu bleiben: Was spricht dagegen,
wenn eine Kl ein Tomographiebild auf bestimmte
Muster durchsucht, dabei wirklich minimale Ab-
weichungen im Vergleich zu vorigen Aufnahmen
findet? Abweichungen, die das menschliche Auge
oder ein vielleicht Ubermideter Arzt gar nicht
sehen wirde. In solchen Fallen gibt es sehr gute
Argumente fir den Einsatz von kinstlicher Intel-
ligenz.

Wird KI zu neuen Jobs in der Geo-Branche fiih-
ren?

Das wird auf jeden Fall so sein. Da gibt es eine gro-
Be Dynamik, und wir missen die Ausbildung des
Nachwuchses dringend darauf ausrichten, dass wir
in Zukunft Menschen mit Kenntnissen im Bereich
Kl rekrutieren kénnen. Kenntnisse in diesem Be-
reich sollten Teil der entsprechenden Studiengan-
ge werden. Bereits heute zeigt sich, dass Absolven-
tinnen und Absolventen, die auch nur minimale
Kenntnisse in Softwareentwicklung und speziell
im Bereich Kl haben, vom Markt férmlich wegge-
saugt werden. In meinem Team am Fraunhofer IPM
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haben wir die Zahl der Mitarbeitenden in diesem
Bereich in den letzten drei Jahren verdoppelt — das
zeigt ganz klar, dass hier viel Potenzial vorhanden

des physikalisch Moglichen angelangt: Wir messen
Uberaus genau mit sehr hohen Punktdichten und
hochster Prazision. In den vergangenen Jahren

ist. Voraussetzung ist, dass die Universitdten und
die Studiengange sich dahingehend weiterentwi-
ckeln und am Marktbedarf orientieren.

Mit was beschéftigen Sie sich am Fraunhofer IPM
in Freiburg?

Wir sind eines von 75 Fraunhofer-Instituten und
arbeiten mit dem Schwerpunkt physikalische
Messtechnik. Im Wesentlichen beschéaftigen wir
uns mit der Entwicklung und der Anwendung op-
tischer Messsysteme. In meinem Bereich sind dies
vor allem laser- oder kamerabasierte Systeme zur
3D-Vermessung grof3er Strukturen, etwa von Infra-
struktur — Schienen, Straen, Bauwerke oder gro-
Ber Vegetationsflachen. Die Messsysteme messen
in der Regel von mobilen Plattformen aus — also
von StraBen- oder Schienenfahrzeugen oder auch
von Drohnen. Seit einiger Zeit arbeiten wir auch
am Einsatz der Systeme auf Unter-Wasser-Fahrzeu-
gen. Was die Messtechnik-Hardware angeht, sind
wir bei einigen Systemen bereits an der Grenze

wurde es immer wichtiger,
Daten aus verschiedenen
Quellen zu fusionieren, um
bei der Interpretation noch
mehr Information zur Ver-
flgung zu haben und damit
belastbare Interpretationser-
gebnisse zu generieren. Das
heifst, die Themen Datenin-
terpretation und -visualisie-
rung haben gegentber der
Datenerfassung deutlich an
Bedeutung gewonnen. Kl ist

»Dateninterpretation
und -visualisierung
gewinnen gegentiber der
Datenerfassung deutlich
an Bedeutung. Kl ist hier ein
wesentlicher Treiber und
Enabler«

Prof. Alexander Reiterer
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hier ein wesentlicher Treiber und der Enabler fur

viele Anwendungsbereiche.

Was wirden Sie gerne besser kbnnen?
Da gibt es zu viele Dinge, als dass ich sie alle auf-

zéhlen konnte.

Was wissen Sie, ohne es beweisen zu kdnnen?
Die Weltformel ist im Kaffeesatz versteckt. //
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Interactive processing of MBES
bathymetry and backscatter data
using Jupyter Notebook and Python

An article by SOPHIE ANDREE

This work explores the potential of Jupyter Notebook and Python to create an interac-
tive processing tool for multibeam bathymetry and backscatter data. For this purpose,
aKongsberg EM 122 data set was used to identify and implement the required process-
ing steps. Special attention was paid to the integration of freely available open source
libraries to meet the performance requirements. The result is a modular approach that
first decodes the required raw data, then computes the bathymetry and backscatter
point clouds and finally applies semi-automatic filters to clean the bathymetry from
outliers and visually correct the backscatter. Validation with data already processed
on board confirmed the general feasibility of the approach. However, minor incon-
sistencies were encountered in the preprocessing of the bathymetry, which should be
addressed in further work. Additionally, the tool can be extended for tidal correction
and navigation processing.
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Diese Arbeit untersucht das Potenzial von Jupyter Notebook und Python zur Erstellung eines interakti-
ven Tools zur Verarbeitung von Facherlot-Bathymetrie- und -Rickstreudaten. Zu diesem Zweck wurde
ein Kongsberg-EM-122-Datensatz verwendet, um die erforderlichen Verarbeitungsschritte zu identifi-
zieren und zu implementieren. Besonderes Augenmerk wurde auf die Integration von frei verfligbaren
Open-Source-Bibliotheken gelegt, um den Leistungsanforderungen gerecht zu werden. Das Ergebnis
ist ein modularer Ansatz, der zunachst die bendtigten Rohdaten decodiert, dann die Bathymetrie-
und Rickstreupunktwolken berechnet und schliefflich halbautomatische Filter anwendet, um die
Bathymetrie von Ausreil3ern zu bereinigen und die Ruckstreuung visuell zu korrigieren. Die Validierung
mit bereits an Bord verarbeiteten Daten bestatigte die generelle Machbarkeit des Ansatzes. Allerdings
traten kleinere Unstimmigkeiten bei der Vorverarbeitung der Bathymetrie auf, die in weiteren Arbeiten
behoben werden sollten. Zusatzlich kann das Tool fir die Gezeitenkorrektur und die Navigationsver-

arbeitung erweitert werden.

Introduction

Today, multibeam echo sounders (MBES) are the
most common and efficient method of conduct-
ing hydrographic surveys for the collection of ba-
thymetry and backscatter data. Due to the chal-
lenging conditions in the marine environment and
the complex MBES system setup, both types of
data require various processing steps to provide
reliable results. Conventionally, proprietary soft-
ware suites with purchasable licenses are used for
this purpose. While these leave little to be desired
in terms of functionality and reliability, it is often
semi-transparent what processing is applied to the
data. In various areas of geomatics, there is a move-
ment towards openness: keyword open source.
Particularly in the university environment, open
source and the use in teaching can be combined
well in order to give students an understanding

of the fundamental interrelationships. With this in
mind, the idea was formed to investigate the pos-
sibilities of processing MBES data in order to devel-
op an interactive tool based on Jupyter Notebook
and Python. The exemplary data was acquired us-
ing a Kongsberg EM 122 MBES aboard the research
vessel Sonne on a transit cruise (S0268-3) from
Vancouver to Singapore, which is also available on
PANGEA (Kinne et al,, 2019).

Why Python and Jupyter Notebook?

As a dynamically typed, interpreted programming
language, Python requires relatively little code to
express a high level of functionality. Therefore, the
code is usually easy to read and quick to debug
and review. When it comes to executing code,
programming languages that are compiled in
advance tend to be faster. However, especially for

Hydrographische Nachrichten



non-professional programmers, the readability
and efficiency of code implementation in Python
is often comparatively more productive than faster
code execution. This is perhaps one of the reasons
why Python has become particularly popular in
the data science community (Carbonnelle 2020).
This leads to another aspect that should be con-
sidered: The open source community for Python
is large. Libraries and packages already exist for
many different applications to solve a wide variety
of tasks. In addition, Python can be used to extend
and embed other languages such as C or C++
In this context, it can be understood as a »glue«
language. Performance-critical parts of a program
can be written in or adapted from faster languag-
es, while Python is used for code control and ad-
aptation (van Rossum and Drake 2003).

Jupyter Notebook is a free, open source, inter-
active web tool that is structured like a notebook.
Software code, computational results, explanatory
text and multimedia resources can be combined
into a single document. Originally, the Jupyter
project grew out of the IPython (interactive Py-
thon) project, with the goal of supporting interac-
tive data science and scientific computing (Perkel
2018). In teaching, Jupyter Notebooks are particu-
larly well suited for interactive software guides.
IPython widgets (GUI controls) can be used to ex-
ecute code specifically on user input without hav-
ing to modify the actual code. In this way, a graphi-
cal user interface can be created with little effort.

Input data

Kongsberg provides MBES data in the binary de-
coded ALL format. The individual sensor measure-
ments (echo sounder, position system, motion
sensor, etc.) are streamed to the output file as se-
quential datagrams. There are two different data-
gram types for both, bathymetry and backscatter
data. For bathymetry, the choice is between the
XYZ datagram and the raw range and angle da-
tagram. The former includes the local Cartesian
coordinates per beam computed in real time. Ship
motion, sound velocity at the transducer face, and
ray bending through the water column have al-
ready been corrected (Kongsberg 2018). The XYZ
datagram was chosen for the first implementa-
tion, even though it disables corrections to the
individual sensor data. The raw range and angle
datagram could be integrated in a later stage.

For the backscatter, the choice was between
the single value per beam reflectivity provided as
part of the XYZ datagram or the beam time series
written to the seabed image datagram. The single
values are typically determined as some sort of
average of the beam time series. This has the ef-
fect of discarding much of the original resolution.
However, while the individual values are already
georeferenced via the associated beam bathym-
etry, the individual beam time series samples must
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be georeferenced via the swath bathymetry in an
additional processing step. Since the resolution of
the backscatter data is very important, the seabed
image datagram is used.

For georeferencing, the position datagram is
grams can be decoded using the PyALL module
written and published on GitHub by Kennedy
(2016). Afterwards, the bathymetry is transformed
from local Cartesian ship coordinates to global
geographic coordinates using the navigation in-
formation. Then, the beam time series backscatter
data are georeferenced by interpolating between
the bathymetry soundings. Subsequently, the
bathymetry and backscatter data are available
as point clouds in a global coordinate reference
frame. As a next step, a semi-automatic filtering of
the bathymetry point cloud and visual image cor-
rections for the backscatter data follow.

Concept development

During concept development, a database ap-
proach was initially considered. As already dis-
cussed, the raw data are provided in different da-
tagram types that have to be handled individually.
However, the datagram timestamps are not always
sequential because individual sensors sometimes
output their measurements with a delay. For these
types of tasks, a database-based approach offers
an optimal solution. The basic idea is to store the
data itself, the different processing stages, but also
metadata and survey information across files in a
project database. In this way, for example, a ba-
thymetry sounding can be traced back through
the processing to the original datagrams (XYZ and
position). Likewise, it would be possible to query
which soundings were measured in equidistant
mode or to find all soundings between specific
coordinates or dates.

However, during the database setup, it became
clear that a complex database management was
critical for both data integrity and processing
performance. This phase proved to be extremely
time consuming and there were only few exist-
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Kongsberg raw data

Positions

|
|

XYZ bathymetry

Y

Seabed image backscatter
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Georeferenced bathymetry >

Georeferenced backscatter

Bathymetry and backseatter filtering

Fig. 1: Required processing steps
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ing libraries that could have been effectively inte-
grated. As a result, the approach failed in terms of
performance. Firstly, performance in terms of the
implementation itself, but also because the data
volumes could not be handled without perfor-
mance orientation.

The important lesson learned from the first ap-
proach was to move from an isolated monolithic
approach based on a project database to a modu-
lar approach with less tightly coupled code. The
individual modules must be specialised for pro-
cessing large volumes of spatial data. In best case,
the modules should come from established, open
source libraries and may also come from perfor-
mance-optimised programming languages such
as C or C++ due to Python’s ability to embed other
languages.

With regard to the above criteria, a combination
consisting of PDAL, Entwine and Potree was tak-
en. PDAL (Point Data Abstraction Library) is a C++
based library for processing point clouds (PDAL
Contributors 2020). The basic concept behind
PDAL is the compilation of individual processing
steps into pipelines. For example, spatial outlier fil-
ters can be assembled for bathymetry cleaning or
attribute-based filters for backscatter correction.
Entwine is a point cloud organisation software that
uses an octree-based storage format (Hobu 2019).
An octree is a tree data structure used for spatial
incrementally dividing cuboids into eight child
cuboids. Using a spatial index can speed up the
processing of point clouds. The Entwine format
can be read into PDAL pipelines and visualised in
Potree. The latter is an interactive, WebGl-based
point cloud renderer for large point clouds (Schiitz
2020). It can be embedded in Jupyter Notebook,
as it is also web-based and uses Entwine’s Octree
structure for efficient visualisation.

The compiled open source libraries are used to
provide decoding of the identified datagrams from
the raw Kongsberg data (PyALL) on the one hand,

Fig. 2: Octree structure of example data created in Potree
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[J Use radius outlier filter

Fig. 3: GUI controls for the radius outlier filter

and bathymetry and backscatter point cloud filter-
ing (PDAL, Entwine and Potree) on the other. To
connect the two components, the raw data needs
to be processed into point clouds by georeferenc-
ing. For this purpose, a separate Python module
was written. The first step is to interpolate the ship
positions to the ping timestamps. The heading is
then used to transform the Cartesian coordinates
of the individual soundings into the superior geo-
graphic coordinate system. For georeferencing
the backscatter time series, the samples belong-
ing to the bottom detection are identified. Since
the georeferencing of the bottom detections is
given by the bathymetry, the other samples can
be georeferenced by rearranging the beam time
series between the bottom detections and inter-
polating between the bottom detection samples.

As previously mentioned, no corrections are
applied to the individual sensor data, which can
significantly degrade the data quality. To address
this problem, the processing was divided into two
phases: First, a preprocessing Python module from
raw Kongsberg data to point clouds. If any correc-
tions would need to be applied, this step may be
conducted within another software. The raw point
clouds can then be imported as ASCII files and
processed in a Jupyter Notebook in which they
are further filtered to outlier-cleaned bathymetry
and visually corrected backscatter. Thereby the
filters can be configured via GUI controls. For the
bathymetry outlier cleaning, a combination of a
depth window filter, an extended local minimum
(ELM) filter, a radius (Fig. 3) and a statistical outlier
filter can be used. For the backscatter corrections,
a constant offset or multiplier can be applied, a
median absolute deviation (MAD) filter used for
despeckling and Poisson sampling for anti-aliasing.

Results

To act in the spirit of open source, the tool has
been released on the code hosting platform
GitHub under the MIT license (Andree 2021). There
is also a documentation/manual in the repository
that provides a good overview if there is interest in
the code itself and how to use it. For now, only the
results of the bathymetry and backscatter process-
ing are considered here. For evaluation, the grids
created during the cruise from manually cleaned
soundings and backscatter mosaics are taken.
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When compared to the on-board processed ba- The pattern is seen in all analysed data subsets
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Fig. 6: Left: Section of processed subset 2 backscatter. Right: Reference backscatter
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this deviation occurs. Presumably, it is due to a dif-
ference in preprocessing. Based on the correlation
with the direction of travel, the cause can prob-
ably be narrowed down to a time or pitch offset.
A possible pitch offset could be caused by a differ-
ence in the handling of the dual-swath mode. A
time offset could result from a discrepancy in the
definition of the exact measurement time or the
position interpolation itself.

The georeferencing of the beam time series looks
plausible and correctly represents bathymetric
features. Since only visual and no comprehen-
sive radiometric corrections were applied, strictly
speaking the two data sets cannot be compared.
Nevertheless, the visual corrections served their
time corrections were found to give very pleasing
results. Compared to the reference grid, it can be
seen that the overall backscatter range is slightly
different and that the result is more noisy and
speckled with some remaining artefacts around
the centre beam area.

Conclusion and outlook

The idea of this work was to develop a tool for
processing bathymetry and backscatter data from
Kongsberg EM series MBESs. This could be realised
using freely available open source libraries. The
advantages of the concept are the modular ap-
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An article by CIGDEM ASKAR

Shallow waters are the transition zones between land and sea where human activities
are dominant, such as building infrastructures and oil digging. Therefore, there is al-
ways a great interest in the stratigraphy of the sub-bottom in shallow waters. However,
working in shallow waters is more complex than deep waters. Various seismic meth-
ods are used in subseafloor investigations, such as sparkers and air guns. Yet, these
methods operate generally towed behind the vessel, which becomes challenging in
very shallow waters. On the other hand, sub-bottom profilers operate mounted on
the vessel; hence, more suitable for shallow waters. This article summarises findings
from the Master Thesis that compared three sub-bottom profilers in very shallow and
tide-influenced areas in the German Wadden Sea. The study was completed during an
internship at the NLWKN Forschungsstelle Kiiste (FSK) Norderney.
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Flache Gewaésser bilden die Ubergangszone zwischen Land und Meer, wo menschliche Aktivitdten do-
minieren, wie z.B. der Bau von Infrastrukturen und Olbohrungen. Daher besteht ein grol3es Interesse an
der Stratigraphie in flachen Gewassern. Allerdings ist die Arbeit in flachen Gewadssern komplexer als in
tiefen Gewassern. Bei der Untersuchung des Bodenaufbaus werden verschiedene seismische Methoden
eingesetzt, wie z.B. Sparker und Airguns. Diese Gerdte werden jedoch in der Regel hinter dem Schiff
geschleppt, was in sehr flachen Gewéssern zu einer Herausforderung wird. Dahingegen arbeiten Sedi-
mentecholote vom Schiff aus und sind daher fUr flache Gewdsser besser geeignet. Dieser Artikel fasst
die Ergebnisse einer Masterarbeit zusammen, in der drei Sedimentecholote in sehr flachen und tidebe-
einflussten Gebieten im deutschen Wattenmeer verglichen wurden. Die Studie wurde wahrend eines
Praktikums beim NLWKN Forschungsstelle Kiiste (FSK) Norderney durchgefiihrt.

Introduction

The challenge of shallow water surveys is their dy-
namic environment. Fierce wave actions, strong
currents, shallow water depths, and a large tidal
range are some factors that induce technological
problems in shallow waters (Missiaen et al. 2018).
The Wadden Sea is an example of such areas,
an intertidal zone that extends along the south-
eastern part of the North Sea and covers approxi-
mately 10,000 km? between the Frisian Islands and
the coast of the Netherlands, the German Bight,
and the Danish coast. The Wadden Sea system
consists of large tidal flats, tidal gullies, inlets and
sandy barrier islands (Hofstede 2005). Varying tidal
ranges and meteorological circumstances work
continuously on its geomorphology. While not all

acoustic sub-bottom investigation methods are
well suited for such environments, sub-bottom
profiling works well.

Sub-bottom profiling is an acoustic technique
used for investigating the characteristics of the
seabed and the sub-surface layers and detecting
buried objects, e.g. pipes or archaeological rem-
nants. The method is similar to a single-beam echo
sounder (SBES). An acoustic signal is vertically sent
into water, then the echoes, which are reflected
(not the backscattering) from the seabed and sub-
surfaces, are recorded. Compared to SBESs, which
operate at frequencies from 12 kHz up to 200 to
400 kHz, sub-bottom profilers (SBP) work at lower
frequencies up to 10 kHz (Lurton 2010).

Parametric and chirp systems are commonly
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used SBPs. The parametric SBP uses a nonlinear
concept, the so-called parametric array, which
produces the desired frequency using the nonlin-
earity in the medium. It sends two slightly different
high frequencies (primary frequencies) into the
water under high sound pressure. Due to the me-
dium’s nonlinearity, new frequencies (secondary
frequencies) are generated, such as difference and
sum. The difference is the low frequency used in
parametric systems and can penetrate deeper into
the seafloor while keeping the low horizontal reso-
lution of the high primary frequencies. The chirp
SBP transmits chirp signals, wide-band, frequency-
modulated (FM) signals that sweep a wide range of
frequencies, mostly varying from 2 to 20 kHz. Upon
reception, chirp signals are correlated with a copy
of the transmitted signal, and the envelope of the
correlation’s output is detected (Lurton 2010). This
process is called pulse compression, which refers
to producing a temporal response narrower than
the received signal’s duration by matched filtering
(Abraham 2017). The vertical resolution depends
on the output pulse width of this process rather
than the received echo width.

This thesis compared three sub-bottom profil-
ers, Echoes 10000 (iXblue), SES-2000 Quattro (In-

summarises specifications of each instrument.

Data acquisition and processing
The data was collected between March and May
2019 in cooperation with the FSK, which also pro-
vided this study with the supplementary data, like
sediment cores, grab samples, bathymetric and
backscatter data sets. The investigated region con-
sisted of three different areas (Fig. 1) in the German
Wadden Sea’s Norderney tidal inlet. Area 1 had a
very shallow water depth of less than 10 m. The
seabed was covered mainly by coarser sediment
or showed an irregular surface in parts due to
some marine organisms. The sub-seabed here had
alternating layers of marine and terrigenous sedi-
ments. The peat layers were one of the frequent
deposits. Area 2 was located at the Riffgat channel
entrance, close to the open sea and affected by
strong tidal currents, waves and wind. Therefore,
the sub-bottom consisted of a very compact gla-
cial Pleistocene base under a very thin recently ac-
cumulated sediment, and coarser sediments cov-
ered the seabed. Area 3 had an irregular seabed
due to the tide-induced ripples and high dunes
along with coarse sediments. Also, the sub-bot-
tom comprised a homogenous type of deposits
in this area.

The instruments were not used simultaneously
but on different dates due to the planning with
other parties. The systems were pole mounted

Instrument Manufacturer System Pulse form Operating/secondary Primary Vertical
frequency frequencies resolution
Echoes 10000 iXblue Chirp Chirp 5-15 kHz - 8cm
SES-2000 Quattro  Innomar Parametric  Ricker, CW 4,5,6,8,10,12 kHz 85-115 kHz up toscm
Topas PS 120 Kongsberg Parametric  Ricker, Chirp, CW  2-30 kHz 70-10 kHz less than 5 cm

Table 1: Instruments’ specifications
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on the port side of the vessel, MS Burchana. The
same motion sensor and dual-antenna positioning
system provided motion and navigation data. For
a better comparison, the acquisition parameters
were kept as constant as possible. Since the region
experiences semi-diurnal tides, surveys were per-
formed during both high tides and low tides. The
wind mainly was strong on the survey days due to
the season. As a result of the wind and tidal cur-
rents, the vessel speed changed from 5 knots to 7
to 7.5 knots, although the intention was to keep it
less than 5 knots.

The data was post-processed with the Delph
Seismic Interpretation software from iXblue. The
sound velocity was applied as constant 1,500 m/s,
and the tide was corrected. Furthermore, a
matched filter was applied to the Echoes 10000
data while a bandpass filter was applied to the
Topas PS 120 data. No filter was applied to the
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Fig.2: Echograms of Area 1 acquired with a chirp frequency of 5 to 15 kHz and parametric
low frequency of 8 kHz. The seabed is covered mainly by coarse sediments. The strong red
reflector is interpreted as peat according to the core sample. The thinnest of laminated layers
is 9 to 10 cm. The rest is acoustically blanked parts and multiple echoes. The same reflectors
on each plot are interpreted with similar colours
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SES-2000 Quattro data. The absorption loss was
balanced by applying some gain during process-
ing. Lastly, the data was heave corrected, if not
corrected during the acquisition, and backscatters
from the water column were removed.

Each system’s data was evaluated against the
specialities of the surveyed areas concerning sys-
tems' technique by focusing on the penetration
depths, visual quality of the plots and vertical reso-
lution. The FSK mainly conducts surveys for geo-
physical investigations, which demands deeper
penetration capacity with sufficient resolution.
Therefore, penetration capability was an impor-
tant criterion in comparison. On the other hand,
the sub-bottom profiler data interpretation is not
fully automated yet and demands quite a lot of
time. Hence, the finalimage’s visual quality is of im-
portance for an effortless interpretation and was
another essential criterion of the comparison. Be-
sides, there is a constant sedimentation cycle and
transport in the Wadden Sea, resulting in changes
in the tidal channel and creeks. These events hap-
pen both in the noticeably short and long term.
A good vertical resolution, therefore, is paramount
to trace these events over time.

Results

In Area 1 (< 10 m, coarse sediment), the systems
achieved a maximum penetration of 2 to 4 m; yet,
it was sometimes not exceeding 0.5 m (Fig. 2). Be-
neath these depths, there were transparent zones
and multiples on the echo plots. Partly, there were
laminated reflectors, the thinnest of which was
measured as 9 to 10 cm. Visually, the echo plots
from the parametric systems SES-2000 Quattro
and Topas PS 120 demonstrated slightly better
performance, especially in displaying thinly lay-
ered sediments.

In Area 2 (compact sub-bottom sediments
topped by a thin layer of Holocene sediments), the
average penetration depth was around 3to4m
shallow part, an old channel and ﬁIImgs were Vis-
ible on the plots. Here, the penetration was slight-
ly deeper than in the channel centre, about 5 m,
marking the old channel bed. SES-2000 Quattro
penetrated slightly deeper, approximately 7 m be-
low the seabed. The vertical resolution was 8 cm
for each system. Visually, reflectors on the Echoes
10000 and Topas PS 120 were in parts weak that
needed more effort to interpret. However, Echoes
10000 provided a good result in the very shallow
tidal flat, considering it is a chirp system.

In Area 3 (homogeneous sediments, sand dunes
and ripples), while the systems reached only down
to 1 m from the seabed in the channel (Fig, 4), the
penetration was around 3 m on the flanks. The Ech-
oes 10000 and SES-2000 Quattro achieved similar
penetrations along the longitudinal survey lines,
while the Topas PS 120 displayed slightly fewer re-
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flectors. However, the SES-2000 Quattro provided
slightly better visualisation of the reflectors than
the Echoes 10000. Also, the SES-2000 Quattro’s
performance along the transversal survey lines
was moderately ahead of the Echoes 10000 and
Topas PS 120 regarding penetration and visualisa-
tion of the reflectors. In Area 3, the ripples and the
coarse sediment cover on the seabed blocked the
systems’ penetration of the seabed in the north-
ern part of the channel,

Discussion

In Area 1, the systems were affected by the gase-
ous peat deposits, very shallow water depths and
coarser sediments on the seabed. Peat is made of
organic matters (such as mosses, grasses, shrubs),
which do not entirely decompose due to water ex-
cess (Bozkurt et al. 2001). During the Wadden Sea
region’s transgression times, the barrier and tidal
inlet system advanced landward, which resulted
in flooding and subsiding of the peat areas due
to the high-water content. Increased space of the
inlet system led to an increase in the tidal prism,
resulting in further subsiding of the peat areas due
to the heavy deposits of clay brought by storms
(Vos and Knol 2015). As a result of alternating trans-
gressions and regressions, there are multiple peat
layers in Area 1. In shallow water deposits, gas
primarily results from the biogenic decomposi-
tion of organic matter (Floodgate and Judd 1992).
The gaseous sediments are easily detected in the
acoustic data because of their distinctive reflec-
tions. Higher acoustic and elastic contrast than the
surrounding non-gaseous medium characterise
gas-bearing deposits (Jasniewicz et al. 2019). The
gaseous sediments attenuate most acoustic ener-
gy and prevent further penetration; hence strong
reflectors with a transparent zone underneath
mark these sediments.

Besides the gaseous sediments, very shallow
water depths affected the systems. Caused by the
shallow water depths, multiples led to problems
in interpreting the sub-bottom structures (Hung
et al. 2010). Lastly, the seabed characterisation in
Area 1 is attributed to another factor for limited
penetration. On the echo plots, the first strong re-
flection represents the seabed where the acoustic
impedance differs in the water-sediment border,
and bottom sediments strongly affect the pen-
etration depth (Hurtado et al. 2013). After most
acoustic energy is reflected and scattered on the
surface, the rest will penetrate the seabed. Jones
et al. (2017) state that tens of metres of penetra-
tion in soft sediments will severely diminish within
sand or rock in parametric systems. In chirp sys-
tems, the penetration might be as low as 3 m
within coarse sediments. In contrast, it can be up
to 200 m in soft sediments (Jones et al. 2017), de-
pending on the water depth. Coarse sediments
cause stronger scattering than the finer sediments
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due to their bigger grain size; hence, less signal
penetrates through the medium. Some marine
species, like Lanice conchilega in Area 1, increases
seabed roughness, which results in higher scatter-
ing of the acoustic energy.

In Area 2, the systems performed on a very
compact seabed covered by coarse sediments in
the channel and shallow water depths with peat
deposits in the tidal flats. The Holocene deposits
in the channel of Area 2 are scoured out due to
the strong currents in the Riffgat channel’s mouth.
Hence, the sub-bottom layers are very compact.
As stated in McGee (1995), consolidated sedi-
ments demonstrate strong scattering and lessen
the seabed acoustic signal penetration. Besides
the packed bottom, coarser sediments on the sea-
bed also increased the scattering, and less energy
is transmitted to the seabed. In the southern part
of the area, where there was a thicker Holocene
deposit, the systems performed better. However,

57



DHyG Student Excellence Award Il

SE

Echoes 10000

S341L82IN TILTIOE

53'41.922N T'11.089E

SES-2000 Quattrg | "7°!

S34LBISN TILUTE

Topas PS 120 L

53'41817N 71LIBE

STALONAN TIL0OIE

()
all A

interpreted with similar colours

Fig. 4: Echogram of Area 3 showing ripples and dunes, acquired with a chirp frequency of
510 15 kHz and parametric low frequencies of 12 kHz (SES-Quattro) and 8 kHz Topas PS 120.
Gravelly sandy sediments cover the seabed. There are only a few reflectors presented on each
echo plot. The penetration is limited by the small ripples on the seabed, coarse sediment on
the seabed and homogeneous sub-bottom sediment. The same reflectors on each plot are

, ' i
2 & A,

i
3,

58

penetration was affected by the shallow waters in
the tidal flats and the peat deposits.

In Area 3, irregular seabed with ripples and high
dunes, the coarse sediment cover and the homog-
enous type of sub-bottom deposits impact the
systems’ performance. Rough surfaces spread the
scattering in all directions while strongly attenu-
ating the specular reflection (Lurton 2010). The
increased scattering results in less energy trans-
mitted into the sub-bottom. Besides that, the core
samples suggest a homogenous type of sediment
for the upper few metres, which means no change
in the acoustic impedance. Therefore, no strong
reflection is recorded until the signal encounters
a border between mediums of different densities.

Conclusion

These results showed that shallow waters, espe-
cially areas under tide influence, are challeng-
ing to work with. Each system used in the study
promised a reliable performance according to
their specifications; although, they were affected

by the surveyed areas’ complex settings. The sys-
tems' capabilities in achieving deeper penetra-
tions, visual representations of reflectors and the
vertical resolution, performances in revealing thin
layers of sediments were the main criteria in the
comparison.

The parametric SES-2000 Quattro provided bet-
ter penetration capability while maintaining a
good resolution. The parametric Topas PS 120 and
chirp system Echoes 10000 performed similarly in
the penetration they achieved. The visual represen-
tation of reflectors on Echoes 10000 was weaker
than on the parametric SES-2000 Quattro, whereas
the parametric Topas PS 120 also provided a weak
visualisation. This, for Echoes 10000, arose from the
used power levels, which were preferred in order
not to cause reverberation in the shallow environ-
ment of the study area. It operated at a lower trans-
mission power level (1 to 3 ms pulses at 10 to 20 %
power level) compared to its optimal configuration
(~10 ms pulse at 50 to 70 % power level). For Topas
PS 120, it is attributed to the higher vessel speed,
which was higher than the suggested speed, 3
to 5 knots, as stated in the instrument manual.
Regarding the vertical resolution, all systems per-
formed well due to the narrow beam pattern of
parametric systems and the chirp system’s broad
frequency range. The thinnest layers displayed by
each profiler were as thin as 7 to 8 cm.

Besides their performances, the setup and the
handling of the software during data acquisition/
processing were straightforward for all systems.
The user guides thoroughly explain the steps of
installation, data collection and processing, and
sub-bottom profiling technique. There was no
interruption during the surveys that stemmed
from system malfunctions. Also, the transducers’
compact sizes make them handy for operating in
shallow waters; however, one has to be careful in
waters shallower than 3 m, especially in the pres-
ence of strong currents, not to run aground with
the system on the pole. //
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Meeting requirements for new types
of on-demand survey campaigns

An article by ANDRES NICOLA and DANIEL ESSER

In March 2021, the newly founded Nicola Offshore GmbH started its work. The com-
pany specialises in services for marine survey campaigns. The fast workboats of the
partner ProMarine BV guarantee the shortest transit times to the site. This means that
the orders can be completed quickly.
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Im Mérz 2021 hat die neu gegriindete Nicola Offshore GmbH ihre Arbeit aufgenommen. Das Unter-
nehmen ist auf Dienstleistungen fUr maritime Vermessungskampagnen spezialisiert. Die schnellen
Arbeitsboote des Partners ProMarine BV garantieren kirzeste Transitzeiten zum Einsatzort. So kénnen

die Auftrage rasch erledigt werden.

We are all well aware that hydrography is a techni-
cal process requiring highly trained professionals
operating complex, expensive equipment with
a common goal: to measure what lies below the
surface of the water for industrial, commercial and
scientific purposes. We can create high-resolution
maps of the seafloor to centimetre accuracy, quan-
tify rates of erosion around underwater infrastruc-
ture and pinpoint the smallest hazards or features
on the seafloor.

With the ability to capture such precise data effi-
ciently and from diverse environments, the subsea
survey industry in Germany and globally is well-
positioned to guide energy and marine construc-
tion companies to develop infrastructure projects
that are both safe and sustainable. New technolo-
gies and cloud-based workflow innovations con-
tinue to provide an even stronger foundation for
improvements in data and finished product quality.

The survey industry is an essential and well-oiled
machine, certainly. But as the expansion of offshore
renewable energy continues globally, there are still
some areas that the industry is playing catch-up.
This is most noticeable in how marine contractors
and survey companies optimise their services for
offshore working, especially for projects where the
actual survey time is minimal, but the time it takes
to organise and transit to site is anything but.

While not new applications at all, there are cer-
tain types of survey jobs that are becoming more
commonplace because of the upturn in the con-
struction of offshore wind farms, which over the
last two decades have seen a steady increase in the
distance from shore, with new installations requ-
larly happening between 30 to 40 kilometres out.

In just 20 years, the average distance from shore
of a wind farm has increased circa 700 % and be-

cause of this, the transit time and cost of service
vessels has become a major consideration in rela-
tion to the wind farm operations and maintenance
(O&M) budget.

[t's also why new, Hamburg-based marine survey
company Nicola Offshore has chosen to provide
specialist survey services with focus on using fast
workboats as an operational platform. The com-
pany, which opened for business in March 2021
and has already completed multiple contracts, was
founded by Nicola Engineering GmbH, a German
marine survey company operating for 50 years,
and ProMarine BV, a highly regarded Dutch manu-
facturer of fast workboats.

The founders formed Nicola Offshore to act like
an »emergency responder« for organisations need-
ing fast access to expert offshore survey capabilities.
With support from exclusive hydroacoustic technol-
ogy partner Subsea Europe Services GmbH, Nicola
Offshore has placed the spotlight on its capabilities
for specific survey types that are becoming more in
demand inthe North Sea and Baltic sea as new wind
farms are built or existing installations expanded.

Specialist survey services

Pre and post dredging reports and cable depth sur-
veys are of course a staple of its work with offshore
contractors and energy companies, but Nicola Off-
shore also specialises in object search and surveys
covering very specific targets. This comes from the
growing number of incidents during offshore con-
struction when tools, equipment or components
are lost over the side of workboats. If the lost item
is integral to the project, it can cause significant
delays and non-productive time of assets mounts
up quickly. Checking data anomalies prior to start-
ing a project also falls into this category.
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Unexploded ordnance, aka UXO, is another key
work stream for Nicola Offshore. UXO is a very real
issue as more infrastructure gets built offshore in
northern Europe. There are an estimated 1.6 mil-
lion tons of conventional UXO still on the seafloor
of the North Sea and Baltic Sea region, which is
causing significant issues for Germany's expanding
offshore wind ambitions.

UXO already creates challenges within the tour-
ism industry, with many WWII relics known to be
close to busy tourist areas. These need to be de-
tected and cleaned to ensure safety, especially for
larger cruise ships with thousands of people on
board. Nicola Offshore’s sister company Nicola En-
gineering has been heavily involved in this activ-
ity and is now providing a foundation of expertise
for similar work, only further offshore at new wind
farm locations.

While the Nicola Offshore team - which has
already grown to 17 marine survey experts and
support staff — will use AUV and/or ROV systems
when appropriate, the company has introduced
innovative vessel systems to ensure safety and
performance on UXO jobs. Operating on a no-risk
policy and leveraging the appropriate technolo-
gies, Nicola Offshore is employing cutting-edge
new solutions, such as a unique UXO detection

Speed matters

While Nicola Offshore’s UXO work highlights its
specialist approach, it's the choice to build a fleet
of high-speed vessels which gives the team a
unique ability in the market to optimise the time
and cost of transiting to offshore wind farms for
ad-hoc or on-demand surveys.

Nicola Offshore’s ability to respond to requests
for urgent and challenging surveys quickly - the
company’s goal is to get the job done in days
rather than weeks while still retaining the highest
safety standards, professionalism and efficiency —
comes in part from its advanced marine data ac-
quisition platform based on ProMarine fast vessels
fitted with flexible and easily configured integrat-
ed hydroacoustic packages.

In addition to the 12.5 metre Nautical Explorer,
the fleet includes Nautical Surveyor, a 14 metre
survey catamaran with a still very respectable top
speed of 27 knots. Two further vessels will join the
fleet in 2021, one of the PROCAT 1200 OBC design
used by Nautical Explorer and a 14.5 metre alumin-
ium boat with an integral A-Frame. As part-owner
of Nicola Offshore, there are also three Fast Work-
boats in different models on standby at ProMarine
in Holland. These are ready to be deployed as
survey platforms should the Nicola Offshore team
need them.

Integrated hydroacoustic technology and fast
boats allow Nicola Offshore's experienced team
of hydrographers to tackle the toughest survey
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projects and collect high-quality data while meet-
ing strict deadlines, often under extreme offshore
conditions. And with transit times to the survey
site being much shorter due to the speed of Nicola
Offshore’s survey boats, costs can be lowered.

A job that may require a day’s transit to the site,
a day on site and a day travelling back to port for a
standard survey vessel can easily be completed in
a single day, with a faster vessel. Nautical Explorer
for instance, can cover 30 kilometres in less than
30 minutes, with its top speed of 44 knots. It's a
simple approach, but as it is already permanently
fitted with a high-performance multibeam pack-
age, Nicola Offshore can be on site next day and,
in many cases, even have the needed data in the
client's hand on the same day.

The benefits to the efficiency of offshore wind
construction projects are very clear. Should an issue
halt work, the assets and professionals in place could
get back to work much sooner if the data needed to
overcome an issue can be delivered quickly.

The concept of agility that drives Nicola Off-
shore is already proven. The partners saw the rise
in demand for unplanned, short surveys with long
transit times growing and together they complet-
ed several successful »on-demand« campaigns in
2020. This ultimately led to Nicola Offshore open-
ing as a full-time provider of agile survey services
for offshore oil & gas installations and wind farms.

Close cooperation with Offshore Energy com-
panies, vessel providers and technology leaders is
helping the new firm to achieve the best results
based on the latest technologies and profession-
ally educated staff, while at the same time respect-
ing the fragile marine environment, preventing
pollution and committing to continuous improve-
ment in order to increase efficiency.

Nicola Offshore has started its business in its
home market, the North- and Baltic Sea, with the
aim to expand in-line with the offshore renew-
able business and to approach new emerging
markets within the Asia Pacific and North America
region. Since its official opening, the fledgling sur-
vey company has already secured contracts in its
home market and has received significant interest
in the European offshore wind markets. //
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100 years of international cooperation
in hydrography

An article by PETER EHLERS

Peter Ehlers was supposed to give a speech at the Assembly 2020 in Monaco planned
for the anniversary of the IHO. Unfortunately, this did not happen, the words remained
unsaid. But because he has something to say, we publish the manuscript of the speech

here.
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Bei der zum Jubildum der IHO fir 2020 geplanten Assembly in Monaco hétte Peter Ehlers eine Rede hal-
ten sollen. Dazu kam es leider nicht, die Worte blieben ungesagt. Doch weil er was zu sagen hat, drucken

wir das Manuskript der Rede an dieser Stelle ab.

|. Call for cooperation

Maybe that some time in future the past 100 years
will be noticed as the initial period of globalisa-
tion. The bad experiences from two world wars
led to ever closer international cooperation, which
aimed to maintain peace, but also intensified the
exchange of information on many technical is-
sues and promoted common, uniform standards.
The different parts of the world came closer and
closer together. This was particularly evident in
the economic relationships that were character-
ised by ever-increasing world trade. Since world
trade is predominantly carried out by sea, safety
of navigation has become increasingly important,
also in the interest of protecting the marine en-
vironment. A basic requirement is the availability
and provision of current and precise hydrographic
information. While in old times states used to
keep hydrographic information more like a secret
treasure — it is no coincidence that the first Danish
hydrographer Jens Sorensen was called »Spy and
Hydrographer« — since the end of the 19th century
the voices increased that advocated closer interna-
tional cooperation. At international maritime con-
ferences 1889 in Washington and St. Petersburg
in 1908 and 1912 the advantages of uniformity in
nautical charts and publications through interna-
tional cooperation were highlighted. However,
only after the First World War time had come for a
first International Hydrographic Conference (IHO),
which was initiated by the British and French hy-
drographers and held in London in 1919.

ll. The IHB Statutes

The 1919 conference in principle adopted a pro-
posal to establish an International Hydrographic
Bureau (IHB) as a permanent international body
to maintain a close association among the par-

ticipating hydrographic offices. For preparing
the statutes and specific directions of the IHB a
special committee was appointed which after
the conference elaborated draft Statutes. By April
1921 they were approved by 19 States. The Stat-
utes formally established the IHB and defined as
its object a close and permanent association be-
tween the hydrographic services of the Member
States to coordinate their efforts with a view to
rendering navigation easier and safer in all the
seas of the world, causing the national offices to
adopt the rules taken by an international hydro-
graphic conference, obtaining uniformity as far
as possible in hydrographic documents, and ad-
vancing the theory and practice of the science of
hydrography. In order to discuss questions con-
cerning hydrography and in particular to review
and guide the work of the IHB, an ordinary IHC
was to be arranged originally every six years, but
it was changed to five years before the first in-
stance. The IHB, which was a consultative body
only should be controlled by a Directing Com-
mittee, composed of three Directors of differ-
ent nationalities, elected by the IHC, a Secretary
General and further staff. The director elected
with the highest number of votes should be the
President of the Committee, acting as primus in-
ter pares. The expenses should be borne by sub-
scriptions from the Member States, divided into
shares which are dependent on the total tonnage
of a Member State. English and French are deter-
mined as official languages. The Statutes declared
that Monaco should be the official seat, following
an invitation of Prince Albert I. These Statutes did
not create an international organisation in the
modern understanding but were restricted to
jointly setting up and operating a bureau to be
led by a triumvirate with decisive powers and su-
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pervised only in long intervals by meetings of the
»owners« who acted as shareholders. From the
very beginning the question as to whether such a
construction was adequate and efficient for inter-
national cooperation was raised again and again.

[ll. Start-up and persistence in hard times
Following the approval of the Statutes the first
three Directors were elected by postal ballot. The
counting of the ballots took place on 21 June 1921
at a meeting of the special committee in London
in the presence of representatives of several States.
This date has to be seen as the official date of the
establishment of the IHB. The Directors immedi-
ately moved to Monaco and started work, con-
centrating in particular on internal administrative
measures. A quite urgentissue was the relationship
with the League of Nations. On 5 October 1921 the
Council of the League adopted a resolution stat-
ing that the IHB »shall be placed under the direc-
tion of the League«. Step by step the general and
technical work of the IHB progressed including the
collection of surveys carried out, their methods
and progress, studies relating to navigation, lights,
tides and magnetism as well as information on the
methods and processes used for compilation, up-
dating and publication of charts and other nauti-
cal documents. For distributing all relevant infor-
mation about new developments to hydrographic
offices (HO), the IHB started in 1923 to publish the
International Hydrographic Review, and to edit Spe-
cial Publications. On specific technical and admin-
istrative subjects Circular Letters were sent out. An-
nual Reports describing progress made, including
a business and financial report, provided further
information and were complemented from 1927
by an IHB Yearbook. In addition, from 1928 prompt
information was disseminated by the International
Hydrographic Bulletin, which initially was published
monthly. A Repository of Technical and Adminis-
trative Resolutions was gradually built up.

The first IHC organised by the IHB, which was
counted as the second IHC after 1919, took place
in the Oceanographic Museum of Monaco in 1926
with the participation of 42 delegates from 21 of
22 Member States and two non-Member States.
The conference agenda addressed 69 topics, in-
cluding charts, sailing directions, lists of lights,
notices to mariners, catalogues, geographical
names, instruments, ocean currents, tides and hy-
drographic surveys, but also modifications of the
Statutes, the financial administration and the elec-
tion of the Directors and the Secretary General for
the next five-year period. As not all issues could
be fully examined a Supplementary Conference,
counted as the first Extraordinary International
Hydrographic Conference (EIHC), was held in April
1929 discussing among other issues for the first
time the problem of copyright of hydrographic
publications. During the conference, the founda-
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tion stone for new premises of the IHB was laid.
After completion the building was inaugurated
by Prince Louis Il of Monaco on 14 January 1931,
so that in 1932 the 3rd IHC could be held in the
chartroom of the IHB premises. At that conference
a specific proposal dealt with the definition of
hydrography as the »science by which data con-
cerning the true configuration of the earth, as far
as navigation demands, are determined and laid
down in charts, Sailing Directions and appertain-
ing publications«. This definition reflects the per-
ception at that time that hydrographic data were
relevant for navigation only. The conference also
accepted responsibility for the production of the
General Bathymetric Chart of the Oceans (GEBCO),
originally initiated by Prince Albert |, which since
then has been a subject of particular interest.

In the 1930s the IHB negatively suffered from the
world economic crisis and adverse political devel-
opments. Several Member States withdrew from
the IHB. A considerable decrease of the contribu-
tions decreased forced the IHB to reduce salaries
and the expenses for publications. The difficult
financial situation dominated the 4th IHC in 1937,
which was only attended by 20 representatives
from twelve of 17 Member States. Amongst the
various resolutions adopted, was the decision to
compile a standard dictionary of hydrographic
terms, a task that has quickly proved to be perma-
nent, and therefore continues to this day.

The situation became far more difficult with the
outbreak of World War Il. Four more States with-
drew their membership, two Directors went to
their home countries, several staff members left
the IHB. The one remaining IHB Director, Pierre de
Vanssay de Blavous (France), carried on conduct-
ing and maintaining the work as best possible un-
der wartime constraints despite of discussions to
suspend all activities and to stop the payment of
contributions. In December 1943 and August 1944
the building was severely damaged by bombing,
but recovery plans were initiated soon and repairs
were carried out by August 1945.

IV. Securing a firm basis

At the end of 1945 the IHB could return to nor-
mal operation. The Hydrographic Dictionary was
published in which hydrography was now defined
more comprehensive, but still concentrating on
navigational purposes. Relations with other in-
ternational organisations were renewed or newly
established. In spring 1947 the 5th IHC could be
held, 16 of 17 Member States participated together
with observers from seven former Member States
as well as from the recently established United
Nations, UNESCO and some other international
organisations. Spanish was introduced as a third
conference language. Initiatives to considerably
re-organise the IHB resulted in a revised version of
the Statutes without changing the legal character,
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the leading principles and the general structure.
A proposal to become an integrated entity within
the framework of the United Nations was rejected
as the conference was in favour of having an inde-
pendent international organisation of mere tech-
nical character, free from general political issues.
In the following years quite a number of States
returned to IHB membership. The 6th IHC in 1952
was attended by 26 out of then 30 Member States,
two non-Members and twelve international or-
ganisations, proving the great interest in the work
of the IHB. The conference was also used to dis-
seminate broader information by lectures given by
participants and by an exhibition of instruments,
which as a side effect became increasingly impor-
tant at following IHCs.

Atthe 7th IHCin 1957 again items relating to con-
stitutional and administrative issues were brought
forward, in particular concerning the legal status
of the IHB. Therefore, the burdensome process for
elaborating a formal convention to achieve recog-
nition of the IHB as an intergovernmental organi-
sation was initiated. After laborious inter-sessional
approaches, the issue was re-discussed at the 8th
IHC in 1962 with participants from 35 of now 41
Member States and three non-Member States. The
conference approved that a convention should be
prepared to be adopted some months later on an
extraordinary IHC. However, it took additional five
years before the 9th IHC in 1967 finally approved
the text of an IHO convention. The legal adop-
tion process took further three years, but at last on
22 September 1970 the IHO Convention entered
into force. And by this the IHO came into existence
as a truly intergovernmental organisation with its
own juridical personality. The convention main-
tained full continuity with the preceding IHB Stat-
utes by taking up their substantial principles, basic
objects, goals and functions. The IHC became now
the assembly of the members of the organisation
and the IHB, composed of the Directing Commit-
tee and the professional staff, the executive body
or secretariat of the organisation, whereas the
additional post of Secretary General was waived.
As the Convention was more or less restricted to
some main principles and provisions, it was sup-
plemented by General Regulations and Financial
Regulations, containing specific rules of proce-
dure. In addition, a Host Agreement was drawn up,
which after lengthy negotiations was signed by
Monaco and France in 1978.

V. Consolidation in a changing world

Although the period after 1957 was essentially
marked by the struggle for a convention, a new
focus was also set on other topics. In the 1960s
and 1970s great significance was attached to
the improvement of hydrographic surveys. This
included specifications for hydrographic survey
operations, the compilation of an index of those

areas, which had not been surveyed to a standard
appropriate for modern navigation requirements,
but also the development of a curriculum re-
flecting the basic standards of excellence, which
should be common to all surveys. Together with
the International Federation of Surveyors (FIG) a
joint International Advisory Board on Standards
of Competence for Hydrographic Surveyors was
established.

At the 9th IHC in 1967 a first step was made to
establish an international charting system, initially
confined to charts at small scale. After the publi-
cation of the first INT charts in 1972, the 10th IHC
extended the concept to medium and large scale
charts, so that international shipping could navi-
gate along all the major sea routes and enter all
major ports of any country by using standardised
INT charts.

It became more and more obvious that hydro-
graphic data and information were not required
for navigation only, but also for other purposes re-
lated to the use and protection of the seas and as
a basic tool for countries to manage their marine
areas. Whereas the fishery industry had since long
been interested in specific hydrographic data, the
increasing offshore activities, aiming at the exploi-
tation of hydrocarbons, created a growing need
for precise hydrographic data.

Another issue that took more and more promi-
nence was technical assistance in the field of hy-
drography. The 10th IHC in 1972 explicitly decided
that the IHB should serve as a source of technical
advice and as a coordinating body for the promo-
tion of measures to establish or strengthen the
hydrographic capabilities of developing countries,
taking into account that at least 50 coastal States
had no hydrographic services at all, whereas the
hydrographic capabilities in many other develop-
ing countries were extremely limited.

In the field of navigation and oceanography
cooperation with other international organisa-
tions became more and more important. The IHO
closely collaborated inter alia with the IMCO, now
the IMO, the 10C of UNESCO, IALA, WMO, and also
participated in the UN conferences on the law of
the sea, starting in 1973 with the aim to elaborate
a new convention. To strengthen the cooperation
between neighbouring HOs the 9th IHC formally
accepted and encouraged the establishment of
Regional Hydrographic Commissions (RHC) to co-
operate in the solution of common regional prob-
lems of charting, research or data collection. At the
beginning of the 1970s six RHCs were active. The
IHO membership steadily increased and in 1972
reached 43, the 10th IHC was attended by 37 of
then 43 Member States, six non-Member States
and 24 intergovernmental and other international
as well as national organisations and associations.
Due to the large number of participants the IHC
could no longer be held at the IHB premises, but
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was organised in the »Centre des Rencontres In-
ternationales«. As an important platform for the
hydrographic community the conference was
supplemented by lectures, an exhibition of hydro-
graphic, oceanographic and navigational instru-
ments and products, and the visit of several hydro-
graphic vessels. In 1977 the 11th IHC introduced
Russian as a fourth working language together
with English, French and Spanish.

As the workload steadily grew, the IHB made
more and more use of the knowledge and ex-
perience by groups, formed of specialists from
Member States. If appropriate such groups were
established in partnership with cooperating inter-
national organisations. Confusingly, the naming of
these bodies differed between working groups, ad
hoc groups, commissions, committees and even
advisory boards. Due to increasing tasks and re-
sponsibilities in the 1960s the IHB staff, not includ-
ing the Directing Committee, had been expanded
to 19 persons, but in the 1970s was reduced again
to 15 persons because of economic menaces, de-
spite considerable increase in contributions to be
paid by the Member States.

VI. New challenges

In the 1980s the IHO had to face new challenges.
Hydrographic activities were more and more
influenced by technological developments, in
particular by the increasing use of computers,
which opened a wide field for digitisation. Close
international cooperation gained further weight.
The workload of expert groups constantly be-
came heavier. In the mid-1980s there existed ten
commissions, committees, sub-committees and
working groups in total. A decade later the work-
ing load had further increased. The 1993 Annual
Report cited 24 commissions, committees and
working groups of the IHO, including joint bod-
ies with other organisations, and contacts with 37
international organisations and associations. Yet
the now existing eight RHCs also took on specific
projects, which they carried out for the benefit of
the whole hydrographic community, in particular
as concerns INT charts. Additionally, because of
increasing activities in Antarctica, in 1992 the 14th
IHC established a Permanent Working Group on
Cooperation Concerning Hydrographic Surveys
and Charting in Antarctica. The efforts were in-
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tensified to increase awareness in developing
countries that hydrography was needed for the
safety of navigation as well as for tasks relating
to the marine environment, coastal research and
coastal engineering. These technical assistance
activities included contacts with Governments,
expert missions and workshops together with
other organisations, training courses at several
maritime academies and the encouragement of
HOs to transfer excess equipment to needy na-
tions.

The setting up of a committee on the exchange
of digital hydrographic and charting data be-
tween HOs by the 12th IHC (1982) may be marked
as the very beginning of the development of an
electronic chart system. Some time later the con-
siderations led to the creation of an IMO/IHO Har-
monization Group on ECDIS. At the beginning of
the 1990s the development of ECDIS became a
major issue of the work of the IHO and resulted in
the elaboration of precise standards and specifica-
tions. The 14th IHC (1992) set up a special commit-
tee to examine matters related to the establish-
ment of a Worldwide Electronic Chart Data Base
(WEND) as an indispensable prerequisite to intro-
duce Electronic Navigational Chart (ENC) services.
In November 1995, the IMO Convention on Safety
of Life at Sea was amended for an electronic chart
display and information system to be accepted as
satisfying the chart carriage requirements, refer-
encing the IHO performance standards for ECDIS.
An important milestone in the history of hydrog-
raphy and navigation was the introduction of the
first operational ENC service, offered by the re-
gional electronic navigational chart centre PRIMAR
in Norway in 2000, which was opened by King
Harold of Norway.

Another crucial issue was the publication of nau-
tical documents by private publishers, resulting in
the decision that no HO may grant permission for
reproduction, if the area in question includes data
collected by another HO, as the data belong to the
originator.

Since the entry into force of the IHO Convention
the IHC repeatedly discussed internal matters of
the organisation, in particular concerning the most
effective structure and composition of the Direct-
ing Committee. The 13th IHC (1987) even amend-
ed the convention to introduce a new election
procedure. However, this amendment never came
into effect, as the necessary quorum for formal ap-
proval was not achieved. Another issue were the
service conditions which at the 14th IHC led to the
approval of further convergence with the relevant
conditions in the UN system.

In the 1980s the annual income of the IHO grew
steadily because of increasing membership. At the
end of the decade 57 States were members of IHO.
Yet the workload of the IHB and all the different
expert bodies significantly increased accordingly.

The output of publications informing about the
results of the various activities tripled, not the
least thanks to the acquisition of modern print-
ing equipment and computerisation that speedily
advanced in the 1990s. The internet dramatically
facilitated communication. More and more digi-
tal versions of publications and documents were
made available. The use of the Spanish language
was enhanced, when the 14th IHC tasked the IHB
to use Spanish for certain periodical publications,
Circular Letters and correspondence.

VII: Facing the third millennium

In late 1996, 75 years after its inauguration, the
IHB premises were moved to the opposite side
of the harbour to the new location 4 Quai An-
toine ler. This heralded a phase of great change.
With about 300 delegates from 52 of 63 Member
States, 18 non-Member States and 15 organisa-
tions and associations the 15th IHC (1997) was
larger than ever before. The conference was
marked by the growing awareness that chang-
ing and adapting to new developments had be-
come more and more urgent in order to survive
in the future. A more systematic internal structure
of the IHO and a clear strategic orientation were
needed. The conference adopted clear principles
for the formation of inter-sessional subsidiary
bodies and general guidelines for the creation
of RHCs, which were understood as part of the
IHO. With regard to the question of how to cope
with future challenges in the field of hydrography
to be prepared for entering the 21st century, an
inter-sessional Strategic Planning Working Group
(SPWG) was established.

Acknowledging that the copyright of the data
belongs to the HO that is the originator of the
data which are included in a chart or a nautical
publication, the 15th IHC approved principles to
be applied by HOs when permitting private pub-
lishers to reproduce charts or nautical publica-
tions. Furthermore, new rules for the exchange
and the reproduction of nautical products on the
basis of bilateral agreements between HOs were
accepted.

The growing importance of assisting countries
in developing hydrographic capabilities was re-
flected in 1998 by a UN General Assembly Resolu-
tion on oceans and the law of the sea, which on
the occasion of the International Year of the Ocean
for the first time made reference to hydrography
and explicitly invited States to carry out hydro-
graphic surveys and to provide nautical services.
The IHO concentrated on capacity building ac-
tivities by conducting technical assistance visits
and accompanying development projects to be
implemented with the support of donor organisa-
tions. Not the least these activities encouraged ad-
ditional States to establish hydrographic services
and to become members of the IHO. In 2000 the
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membership had increased to 69 Member Gov-
ernments. At the same time twelve Regional Hy-
drographic Commissions and the Committee for
Antarctica existed, covering most of the major sea
areas worldwide.

In a time of globalisation when maritime trans-
port was steadily growing and the risks for the
marine environment in case of casualties were
expanding, accurate hydrographic information
became more important than ever for safe naviga-
tion. It was only logical that the IMO in 2000 re-
vised Chapter V of the International Convention for
the Safety of Life at Sea (SOLAS) to introduce new
regulations that oblige Contracting Governments
to carry out nautical and hydrographic services in
the manner most suitable for navigation. Charts
and nautical publications must be issued by or on
behalf of a relevant Government institution. These
regulations, which entered into force in 2002, may
be seen as a quantum leap for HOs. For the first
time international law created an obligation for
States to maintain hydrographic services, as well as
a firm commitment to cooperate, standardise and
coordinate activities on a worldwide scale. The in-

creasing interest in hydrographic matters was also
shown when in 2001 the IHO, though for good
reasons still not interested in becoming a UN or-
ganisation, was granted observer status to the UN
General Assembly.

Based on an analysis of the strengths and weak-
nesses of the organisation and the opportunities
and threats facing it, the SPWG developed strate-
gic goals and priorities of IHO, examined necessary
structural or constitutional changes to enhance
the future effectiveness, proposed a strategic
planning cycle and presented a strategic plan. To
speed up the process the results of the SPWG were
discussed at a supplementary conference, the 2nd
EIHC, in 2000. The conference adopted the pro-
posed new Strategic Plan, which highlighted as
main strategic issues the transition to the digital
era, a global hydrographic data coverage, the re-
sponse to developments of Government policy,
the adequate funding for the provision of hydro-
graphic services, the building up of effective na-
tional organisations and the provision of services
other than for navigation. For implementing this
plan, a work programme for the next five-year pe-
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riod and the future planning cycle were approved.
The SPWG continued to study especially the need
of structural changes and was tasked by the 16th
IHC (2002) to carry out a study on the need to re-
vise the IHO Convention.

Considerations, which had started in the 1970s,
that hydrographic data were not only important
for navigation, became more and more evident.
The demand grew for hydrographic data for other
purposes, especially for fishing, offshore activities,
coastal protection, harbour construction, and ma-
rine scientific research; non-navigational applica-
tions had to include the determination of national
maritime boundaries, coastal zone management,
modelling of marine areas, study of habitats, as-
sessment of the state of the marine environment
and exercise of national rights in maritime zones.
Accordingly, the IHO understood the provision of
hydrographic data for geomatic applications as an
important new policy direction.

VIIl. Renewing the IHO
The work to reform and modernise the IHO, es-
pecially done by the SPWG, came to a conclusion

by a 3rd EIHC in 2005 in agreeing on far reaching
amendments of the IHO Convention. The main
objectives of the amendments were to maintain
the strengths, eliminate the weaknesses, achieve
the vision, mission and objectives of the IHO and
establish a more effective and cost-effective sys-
tem. The new version of the convention clarifies
that the IHO is the competent international or-
ganisation for hydrography and defines its vision,
mission and objects. The organisational structure
and procedures are drastically changed. The IHC
is now named the Assembly, being the principal
organ of the IHO, and has all the powers of the or-
ganisation unless otherwise regulated. The period
between ordinary sessions of the Assembly is re-
duced to three years. In addition to the Assembly
a Council is created. It is composed of one fourth,
but not less than 30 Member States. The func-
tions of the Council are to guide and coordinate
the IHO activities during the inter-Assembly pe-
riod. The term International Hydrographic Bureau
(IHB) is replaced by the term Secretariat, which
comprises of a Secretary General as the chief ad-
ministrative officer, Directors and other personnel.
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Supplementary detailed provisions were adopted
by the 17th IHCin 2007, including General Regula-
tions and Rules of Procedures for the Assembly,
the Council and the Finance Committee. In an-
ticipation of the Convention amendments, which
had not yet entered into force, the 17th IHC also
decided on a new structure for the subordinate
bodies by establishing the Hydrographic Services
and Standards Committee (HSSC) and the Inter-
Regional Coordination Committee (IRCC) as main
committees. The hitherto unclear legal nature of
the existing 15 RHCs was explicitly regulated, as
being regional bodies established by Member
States, but recognised by the Assembly. A special
status was maintained for the Hydrographic Com-
mission on Antarctica.

Capacity building, in particular, gained more
and more importance and was strongly influ-
enced by the RHCs and further enhanced by an-
nual UN General Assembly Resolutions on the
Law of the Sea, which repeatedly welcomed the
work of the IHO and its Regional Commissions.
The importance of international cooperation and
the support for developing States in building up
hydrographic capabilities became highly obvious
after the tsunami disaster in December 2004 and
was reconfirmed in response to the earthquake
and tsunami in Japan in 2011. The 18th IHC in 2012
agreed on revised guidelines and procedures with
the aim of helping Member States to develop con-
tingency plans in case of anticipated disasters.

In 2005 the UN General Assembly explicitly
welcomed the adoption by the IHO of a »World
Hydrography Day« to be celebrated annually on
21 June, as the date of creation of the IHB, with the
aim of giving suitable publicity to its work and of
increasing the coverage of hydrographic informa-
tion on a global basis.

Especially concerning ECDIS, the collaboration
with IMO became even more intensive, as the
work of the IHO depended on the acceptance
of performance standards and carriage require-
ments to be determined by IMO. As a first step, in
2006 the IMO made the carriage of ECDIS manda-
tory for high speed craft. Three years later in 2009
the mandatory carriage for other than high speed
craft was introduced by IMO in a phased manner
from 2012 onwards. In the light of this develop-
ment the 17th (2007) and 18th IHC (2012) under-
lined the importance of full ENC coverage and the
need in many parts of the world for improving the
collection, quality and availability of hydrographic
data.

In order to manage the many different seaborne
uses and interests, the need for precise marine
data became more and more evident, not the
least as an indispensable basis for the develop-
ment of marine spatial planning programmes. Hy-
drographic data were seen as an important part of
an adequate marine data infrastructure. HOs had
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to move from map production as their primary fo-
cus to the management and operation of, or the
participation in, marine spatial data infrastructures
(SDI) from which nautical charts and other prod-
ucts were derived. The 4th EIHC (2009) adopted
a Marine Spatial Data Infrastructure Policy, in 2011
the IHB launched a specific IHO Publication on
»Spatial Data Infrastructure — the Marine Dimen-
siong, which explained the way that HOs might
provide hydrographic-related data as part of the
national SDI.

Another further remarkable step towards the
modernisation of the IHO was made by the 4th
EIHC. The starting point was a new definition of
hydrography as »the branch of applied sciences
which deals with the measurement and descrip-
tion of the physical features of oceans, seas, coastal
areas, lakes and rivers, as well as with the prediction
of their change over time, for the primary purpose
of safety of navigation and in support of all other
marine activities, including economic develop-
ment, security and defence, scientific research, and
environmental protection«. The broad new defini-
tion was reflected in the revised Strategic Plan that
was not a mere updating of the earlier version but
introduced a new systematic approach and the
use of modern management tools, which was to
be implemented by a new structured Working
Programme, including annual performance moni-
toring. The 4th EIHC also invited the relevant RHCs
to encourage through appropriate liaison bodies
the consistent use of hydrographic standards and
mutual cooperation for the enhancement of safe-
ty in navigable inland waters within and between
regions, as no other organisation was in a position
to foster this harmonisation.

In the 2000s cooperation with private industry
steadily became closer. The exchange of infor-
mation and experience with stakeholders from
academia, industry, government and non-gov-
ernmental organisations was intensified through
stakeholders’ forums. A special information ses-
sion, held at the 5th EIHC (2014), in particular dealt
with the collection of bathymetric data collated
by private crowd-sourcers, as new technologies
could be used by private entities leading to the
development of open-sea-map behaviours.

The conferences in 2012 and 2014 devoted par-
ticular attention to the progressively increased
workload and scope of the IHO, which was mainly
due to the rising number of Member States, more
RHCs and more regular RHC meetings, secretariat
functions for IHO bodies, the implementation and
management of the capacity building programme,
the maintenance of the very comprehensive IHO
documentation and website, the introduction of
programme performance monitoring, the involve-
ment in outreach activities and the active recruit-
ment of new Member States, implementation
measures related to ECDIS, participation in the de-
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velopment of the IMO e-navigation strategy and
representation in a number of new intergovern-
mental initiatives. At the same time the transition
from paper to digitally-based hydrographic prod-
ucts and the broader use of the IHO data transfer
standard placed an increased responsibility and
obligation on the IHO to ensure the reliable main-
tenance of the standard.

IX. IHO today

After twelve years the necessary quorum for the
approval was met and the Protocol of Amend-
ments to the IHO Convention entered into force
on 8 November 2016. The new structure of the
IHO was put in place without significant prob-
lems. The IHC now became the IHO Assembly.
As an additional powerful organ, the Council
was established to act in operational control of
the organisation for the inter-sessional period.
And the former IHB was renamed to IHO Secre-
tariat. The now 87 Member States held the first
Assembly meeting in spring 2017, adopted the
necessary organisational and procedural adapta-
tion measures, approved the composition of the
Council, and elected Mathias Jonas, the former
head of the Nautical Hydrographic Department
of the BSH (Federal Maritime and Hydrographic
Agency, Germany) as Secretary General as well as
two assisting Directors. The Assembly also dealt
with numerous technical issues, such as the use
of ECDIS, information to mariners about subma-
rine cables, improvement of the availability of
bathymetric data worldwide, including crowd
sourcing, and participation in geospatial informa-
tion management activities. Some months later
the Council started its annual meetings, focusing
on strategic planning, the Work Programme and
financial control, including the approval of the
budget for the following year. Due to the global

effects of the Covid-19 pandemic the second As-
sembly was moved from April to November 2020
and was only conducted as a remote event by
combining Assembly Circular Letters to be de-
cided on in advance and virtual assembly ses-
sions. This hybrid format resulted in 52 decisions,
including the future of the paper chart, the fur-
ther development of the technical standardisa-
tion of ENCs, as well as the Work Programme and
budget for the next three year-period. Thus, IHO's
ability to remain agile and decisive under extraor-
dinary conditions was demonstrated, though the
paramount benefit of in-person meetings was
recognised by all online participants.

X. Conclusion

At its 100th anniversary the IHO, which has begun
as a Bureau with 19 shareholders, has become the
competent global organisation for hydrography,
comprising of 94 Member States from all parts
of the world, and with an annual budget that in-
creased from originally 242,000 Swiss francs to 3.6
million euros. Over the past 100 years, IHO has con-
sistently succeeded in modernising itself, adapting
and expanding its range of tasks and activities in
the light of new developments and challenges.
Despite all changes and modifications, however,
an unbroken continuity has been maintained. It
has been proved advantageous that the IHO is not
a political, but a technical organisation only. Nor
has it been a hindrance that the IHO is of consulta-
tive nature only, as technical standards reflect the
state of the art and therefore in the end are accept-
ed and applied even if they are not legally binding.
While the IHO, for well-considered reasons, is not
part of the UN system, it is nevertheless an indis-
pensable element in global efforts concerning
safety of navigation and the sustainable develop-
ment of the oceans. //
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www.subsea-europe.com ¢ surveyready@subsea-europe.com ¢ +49 40 307 007 84



mit GNSS und
Polarmessverfahren

Die Leica GNSS-Instrumente
empfangen und verarbeiten die
Signale aller aktuellen und zukunftigen
Navigationssysteme.

Hochste Prazision bei voller
Automatisierung der Messablaufe
garantieren die Leica Polarmesssysteme.

Leica Geosystems GmbH Vertrieb
®

www.leica-geosystems.de
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